

ALiNa

<u>A</u>nalisi dei <u>li</u>velli di fondo <u>na</u>turale per alcune sostanze presenti nelle acque sotterranee della falda superficiale dell'acquifero differenziato del bacino scolante in laguna di Venezia (bacino deposizionale del Brenta)

Presentazione dati e determinazione dei livelli di fondo

ARPAV

Direttore Generale Carlo Emanuele Pepe

Direzione Tecnica Paolo Rocca

Dipartimento Regionale per la Sicurezza del Territorio Alberto Luchetta

Progetto e realizzazione

Servizio Osservatorio Acque Interne Italo Saccardo (Responsabile della struttura) *Cinzia Boscolo e Filippo Mion* (Autori)

Analisi chimiche Dipartimento Regionale Laboratori

Hanno collaborato

Servizio Osservatorio Suolo e Bonifiche Dipartimento Provinciale di Venezia

ottobre 2014

1	Intro	duzione	. 1
	1.1	Il progetto	. 1
	1.2	Scopo del rapporto	.3
2	l pui	nti di campionamento	. 4
3	Elab	orazioni	. 5
	3.1	Software utilizzato	. 5
	3.2	Trattamento dei valori non detect	. 5
	3.3	Calcolo statistiche descrittive	. 5
	3.4	Matrici di correlazione	. 6
	3.5	Mappe di distribuzione	6
4	Suol	i	.7
	4.1	Analisi diffrattometriche ai Raggi X (XRD)	.7
	4.2	Analisi granulometrica	.8
	4.2.1	Correlazioni analisi diffrattometrica ai raggi X e granulometrica	11
	4.3	Analisi chimiche	12
	4.3.1	Tessitura del suolo	12
	4.3	3.1.1 Correlazioni tra variabili	17
5	Acq	ue sotterranee	19
	5.1	Le campagne di monitoraggio	19
	5.1.1	Il campionamento	19
	5.2	I parametri misurati	20
	5.3	Il dataset completo	20
	5.3.1	Correlazione tra variabili	24
	5.3.2	2 Mappe di distribuzione	24
	5.4	Relazione tra le concentrazione misurate nel suolo e nelle acque	25
	5.5	Determinazione dei valori di fondo	27
	5.5.1	Dataset per la determinazione dei valori di fondo	27

Indice

	5.5.2	Valutazione dati potenzialmente anomali	.27					
	5.5.3	Definizione della distribuzione dei dati	.28					
	5.5.4	Calcolo dei valori di fondo	.29					
	5.5.5	Proposta di valori di fondo	.29					
6	Bibliog	prafia	.30					
Ap	pendico	e A – Elenco piezometri	4-1					
Ap	Appendice B – Dati suoliB-1							
Ap	pendico	e C – Dati acque	C-1					
Ар	pendice	e D – Confronto valori misurati nelle diverse matrici: suolo, eluato e acque sotterranee [D-1					
Ap	Appendice E – Distribuzione spaziale parametri suoliE-1							
Ap	pendico	e F – Distribuzione spaziale parametri acque	F-1					
Ap	pendico	e G – Distribuzione spaziale Al, As, Fe e Mn nelle diverse matrici	3-1					
Ар	pendic	e H – Outlier, tipo di distribuzione e calcolo percentili	H-1					

Indice delle tabelle

Tabella 2. Rapporti granulometrici dei campioni superficiali secondo il sistema di classificazioneUSCS e gruppo di appartenenza secondo l'analisi dei cluster.10

Tabella 4. Calendario campagne di monitoraggio19

Tabella 6. a) Risultati del test di Peto-Prentice per singolo parametro. b) Risultati del test di Peto-Prentice per il confronto multiplo per il ferro.21

Tabella 8. Statistiche descrittive delle concentrazioni misurate nelle'eluato per Al, As, Fe e Mn Tutte le concentrazioni sono espresse in μ g/l. I valori sono stati calcolati ponendo <LOQ pari a LOQ. 25

Tabella 10. Statistiche descrittive dei dataset con outliers a) e senza outliers b)......28

Tabella B-1. Determinazioni analitiche sui campioni di suolo: calcare totale, carbonio organico totale, capacità di scambio cationico (C.S.C), pH e tessitura......B-1

Tabella B-2. Analisi suolo: metalli......B-3

Tabella B-4. Risultati test di cessioneB-	-6	5
---	----	---

Tabella C-1. Parametri determinati in campo sui campioni di acque sotterranee.C-1

Tabella C-2. Determinazioni analitiche sui campioni di acque sotterranee.C-5

Tabella D-1. Concentrazione di alluminio misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee......D-1

Tabella D-2. Concentrazione di arsenico misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee......D-2

Tabella D-3. Concentrazione di ferro misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee.......D-3

Tabella D-4. Concentrazione di manganese misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee......D-4

Tabella G-1. Distribuzione spaziale dell'alluminio nelle diverse matrici: acque, eluato e suolo......G-1

Tabella G-2. Distribuzione spaziale dell'arsenico nelle diverse matrici: acque, eluato e suolo.G-2

Tabella G-3. Distribuzione spaziale del ferro nelle diverse matrici: acque, eluato e suolo......G-3

Tabella G-4. Distribuzione spaziale del manganese nelle diverse matrici: acque, eluato e suolo...G-4

Tabella H-1. Risultati del test di Walsh per l'individuazione degli outlier (a=0.10). H-1

Indice delle figure

Figura 7. pH e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.14

Figura 9. CSC e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti......15

Figura E-1. Distribuzione spaziale della % di calcare totale nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-1

Figura E-2. Distribuzione spaziale della % carbonio organico nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-1

Figura E-3. Distribuzione spaziale della capacità di scambio cationico (meq/100g) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-2

Figura E-4. Distribuzione spaziale del pH nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-6. Distribuzione spaziale della % di limo fine nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-3

Figura E-7. Distribuzione spaziale della % di limo grosso nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).....E-4

Figura E-8. Distribuzione spaziale della % di limo nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-4

Figura E-9. Distribuzione spaziale della % di sabbia nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-5

Figura E-10. Distribuzione spaziale dell' alluminio (g/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-5

Figura E-11. Distribuzione spaziale dell'arsenico (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-6

Figura E-12. Distribuzione spaziale del berillio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).....E-6

Figura E-13. Distribuzione spaziale del cadmio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).....E-7

Figura E-14. Distribuzione spaziale del cobalto (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)......E-7

Figura E-15. Distribuzione spaziale del cromo (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-8
Figura E-16. Distribuzione spaziale del rame (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)
Figura E-17. Distribuzione spaziale del ferro (g/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)
Figura E-18. Distribuzione spaziale del mercurio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-9
Figura E-19. Distribuzione spaziale del manganese (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-10
Figura E-20. Distribuzione spaziale del nichel (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-10
Figura E-21. Distribuzione spaziale del piombo (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-11
Figura E-22. Distribuzione spaziale dell'antimonio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-11
Figura E-23. Distribuzione spaziale del selenio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-12
Figura E-24. Distribuzione spaziale dello stagno (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)E-12
Figura E-25. Distribuzione spaziale del vanadio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)
Figura E-26. Distribuzione spaziale dello zinco (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2)
Figura F-1. Distribuzione spaziale del pH nei campioni di acque sotterranee
Figura F-2. Distribuzione spaziale della conducibilità elettrica (µS/cm) nei campioni di acque sotterranee
Figura F-3. Distribuzione spaziale del carbonio organico totale (mg/l) nei campioni di acque sotterranee
Figura F-4. Distribuzione spaziale dei cloruri (mg/l) nei campioni di acque sotterranee
Figura F-5. Distribuzione spaziale dei solfati (mg/l) nei campioni di acque sotterranee
Figura F-6. Distribuzione spaziale dei nitrati (mg/l NO3) nei campioni di acque sotterranee
Figura F-7. Distribuzione spaziale dell'ammoniaca (mg/l NH4) nei campioni di acque sotterranee. F-7
Figura F-8. Distribuzione spaziale della'alluminio (µg/I) ei campioni di acque sotterranee

Figura F-9. Distribuzione spaziale dell'arsenico (µg/l) nei campioni di acque sotterranee
Figura F-10. Distribuzione spaziale del ferro (µg/I) nei campioni di acque sotterranee
Figura F-11. Distribuzione spaziale del manganese (µg/l) nei campioni acque sotterranee
Figura H-1. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'arsenico
Figura H-2. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'arsenico dopo la rimozione del valore estremo di 420 µg/l
Figura H-3. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del ferro
Figura H-4. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del ferro dopo la rimozione dei tre valori estremi di 10347, 10799, 22077
Figura H-5. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del manganese
Figura H-6. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del manganese dopo la rimozione dei due valori estremi di 905, 937
Figura H-7. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'ammoniaca
Figura H-8. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di

figura H-8. Combinazione di ecat-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'ammoniaca dopo la rimozione del valore di 40.5 mg/l.

Abbreviazioni

%cen percentuale osservazioni censored (inferiori al limite di quantifcazione)

- Al alluminio As arsenico CE conducibilità elettrica Cl cloruri CSC concentrazione soglia di contaminazione coefficiente di variazione C٧ empirical cumulative distribution function ecdf Fe ferro GOF goodness-of-fit kur kurtosis mad deviazione assoluta dalla mediana (median absolute deviation) mle stima della massima verosimiglianza (maximum likelihood estimates) Mn manganese mvue minimum variance unbiased estimator; ncen numero di osservazioni censored (inferiori al limite di quantificazione) NDs non-detect NH4 ione ammonio nobs numero di osservazioni ppcc Probability Plot Correlation Coefficient QQ quantile-quantile regression on order statistics ROS sd deviazione standard (standard deviation) sk skewness
- SO4 solfati

1 Introduzione

1.1 Il progetto

Nel corso delle Conferenze di Servizi, convocate dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare per l'esame dei progetti di bonifica delle acque di falda che interessano l'area del Sito di Interesse Nazionale di Venezia - Porto Marghera, è emersa più volte la necessità di avviare uno studio che definisca le concentrazioni di alcuni parametri chimici naturalmente presenti nell'area, in quanto le analisi chimiche effettuate sulle acque di falda evidenziano sistematicamente il superamento dei valori di accettabilità stabiliti dalla tab. 2 all. 5 al titolo IV del D.Lgs 152/06 per i parametri alluminio, arsenico, ferro e manganese.

La necessità di individuare i valori di fondo naturale per i parametri sopra indicati è riferibile anche al territorio del bacino scolante in laguna di Venezia; in più occasioni infatti, i Comuni compresi in tale ambito hanno segnalato per gli impianti di depurazione, il cui recapito è in acque superficiali, la difficoltà di rispettare i limiti imposti dal D.M. Ambiente e LL.PP. del 30 luglio 1999, in quanto le acque che pervengono a tali impianti hanno concentrazioni di arsenico superiori al limite di scarico imposto e tali concentrazioni potrebbero essere riferite al fondo naturale.

Con Deliberazione n. 45 del 27.07.2011 il Consiglio Regionale ha approvato il programma degli interventi di monitoraggio ambientale per la salvaguardia della Laguna di Venezia e del suo Bacino Scolante, approvando anche la Scheda A3 "Piano per l'analisi dei livelli di fondo naturale per alcune sostanze presenti nelle acque sotterranee della falda superficiale dell'acquifero differenziato del bacino scolante in laguna di Venezia".

Successivamente con DGRV n. 162 del 07.02.2012 la Giunta regionale del Veneto ha adottato la scheda A3 – "Piano per l'analisi dei livelli di fondo naturale per alcune sostanze presenti nelle acque sotterranee della falda superficiale dell'acquifero differenziato del bacino scolante in laguna di Venezia", incaricando ed autorizzando ARPAV all'attuazione di detto progetto.

Con la medesima DGRV la Giunta regionale ha anche adottato il relativo Schema di Convenzione e ARPAV con DDG 76 del 19/03/2012 ha preso atto dello stesso. La convenzione è stata sottoscritta dai rappresentanti di entrambi gli enti in data 28 marzo 2012.

Il progetto, denominato ALiNa (Analisi dei livelli di fondo naturale per alcune sostanze presenti nelle acque sotterranee della falda superficiale dell'acquifero differenziato del bacino scolante in laguna di Venezia - bacino deposizionale del Brenta) ha tra gli obiettivi la definizione di un valore di fondo naturale per arsenico, ferro, manganese, alluminio, solfati, cloruri e ione ammonio nelle acque sotterranee della falda superficiale dell'acquifero differenziato del bacino scolante in laguna di Venezia per quanto riguarda il "bacino deposizionale del Brenta".

Le attività previste dal progetto sono:

- 1. raccolta di tutte le fonti bibliografiche e delle informazioni ottenuti da ricerche e studi recenti o in corso ;
- 2. raccolta, revisione e organizzazione, all'interno di un database, dei dati esistenti;
- 3. elaborazione dei dati e costruzione del modello concettuale geologico ed idrogeologico;
- 4. individuazione delle aree rappresentative;

- 5. analisi dei punti di prelievo esistenti e funzionali compresi nelle aree rappresentative;
- 6. ubicazione e intensificazione dei punti di prelievo attraverso la realizzazione di 34 nuovi piezometri;
- 7. campionamento e monitoraggio su 50 punti di controllo (16 esistenti e 34 di nuova perforazione) nell'arco di 4 campagne;
- 8. analisi chimiche di laboratorio sulla matrice acqua;
- 9. elaborazione dei dati e redazione del rapporto conclusivo.

Per le attività di cui ai punti 1, 2, 3, 4 e 5, con DDG n. 194 del 05.07.2012, è stata affidata alla ditta SINERGEO srl il servizio di consulenza geologica per la raccolta e l'organizzazione dei dati esistenti e per l'individuazione del posizionamento di 34 nuovi piezometri intercettanti la falda superficiale. Sulla base del modello concettuale ed idrogeologico realizzato da SINERGEO, tenendo in considerazione la presenza di siti contaminati, aree di discarica, aree industriali e cuneo salino, sono state individuate le 34 posizioni in cui realizzare i sondaggi ed installare i piezometri.

Con DDG n. 238 del 06.09.2012, l'attività di esecuzione sondaggi ed installazione piezometri è stata affidata alla ditta Geolavori srl.

In ognuno dei 34 siti sono state effettuate le seguenti attività:

- sondaggio a carotaggio continuo;
- campionamento per analisi granulometrica;
- stratigrafia di dettaglio;
- campionamento per analisi diffratometriche;
- campionamenti per analisi chimiche;
- campionamenti per test di cessione;
- installazione di tubo piezometrico da 4'' in HDPE;
- installazione di chiusino metallico carrabile;
- spurgo del piezometro.

Con nota n 89989 del 26.08.2013 ARPAV ha trasmesso alla Regione Veneto la relazione conclusiva delle attività svolte dalla ditta SINERGEO srl e gli elaborati tecnici relativi alle indagini in sito ed in laboratorio elaborate dalla ditta Geolavori srl.

1.2 Scopo del rapporto

Scopo del presente documento è presentare i dati raccolti nell'ambito del progetto e stabilire un valore di fondo per alluminio, arsenico, ferro, manganese, ione ammonio, cloruri e solfati, su base statistica.

Il documento di riferimento è il "Protocollo per la Definizione dei Valori di Fondo per le Sostanze Inorganiche nelle Acque Sotterranee" elaborato da ISPRA nell'aprile del 2009. Tale protocollo è stato concepito per rispondere alle esigenze di determinazione del fondo naturale, con particolare riferimento a metalli e metalloidi, nelle acque di falda di *Siti Contaminati di Interesse Nazionale*, quindi delle entità abbastanza limitate dal punto di vista spaziale e con una certa omogeneità per quanto concerne le caratteristiche fisiche delle matrici ambientali coinvolte e con pressioni perlopiù uniformi.

Nel documento si evidenzia l'assenza di un criterio condiviso sulle modalità di determinazione della concentrazione del valore di fondo in una determinata area.

La recente direttiva europea 2014/80/UE del 20 giugno 2014, che apporta alcune modifiche all'allegato II della Direttiva 2006/118/CE sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento, sottolinea proprio la necessità di applicare principi comuni per la determinazione dei livelli di fondo.

2 I punti di campionamento

In Figura 1 è riportata l'ubicazione dei 50 piezometri utilizzati per il prelievo dei campioni di acque sotterranee, distinti tra esistenti e di nuova perforazione. In Appendice A sono riassunte le principali caratteristiche dei 50 piezometri.

Le schede monografiche e le stratigrafie dei 34 piezometri di nuova perforazione sono riportate nella "Relazione descrittiva delle indagini in sito ed in laboratorio" redatta da Geolavori srl.

piezometro 🛛 esistente 🌒 nuova perforazione

Figura 1. Ubicazione dei piezometri per il prelievo dei campioni di acque sotterranee. I punti di nuova perforazione individuano anche i siti di prelievo per i campioni di suolo.

3 Elaborazioni

3.1 Software utilizzato

Per le elaborazioni, l'analisi e le rappresentazioni grafiche è stato utilizzato l'ambiente statistico open source R (<u>www.r-project.com</u>).

I principali pacchetti utilizzati sono:

- RODBC per la connessione al database [Brian Ripley and Michael Lapsley (2013)];
- Soiltexture per i grafici della tessitura del suolo [Julien MOEYS and Wei Shangguan. (2014)];
- ggplot2 per i grafici e le mappe [Wickham (2009)];
- ggtern estensione di ggplot2 per la creazione di diagrammi ternari [Nicholas Hamilton (2014)]
- Corrplot per le matrici di correlazione [Wei (2013)];
- NADA e Envstats per l'analisi di dati con nondetecs [Lopaka (2013), Millard (2013)].

È stato scelto di utilizzare *R* per una serie di motivi, oltre al fatto che è open source. Innanzitutto *R* può facilmente importare ed elaborare dati dal database (o da fogli di calcolo) e produrre grafici di elevata qualità grafica. Inoltre è possibile scegliere tra una numerosa serie di pacchetti, quelli più adatti al tipo di dati da elaborare ed all'analisi che si intende sviluppare. Infine, le elaborazioni possono essere facilmente eseguite su dataset sia di piccole che di grandi dimensioni ed una volta che gli script sono stati sviluppati, l'aggiunta di dati al database non richiede di riscrivere il codice.

3.2 Trattamento dei valori non detect

Con *non detect* si indicano i valori al di sotto del limite di quantificazione, che è la quantità più bassa che un metodo, un laboratorio oppure uno strumento possono quantificare con una incertezza ragionevole.

Un campione di dati con presenza di valori non detect è chiamato censored o meglio leftcensored oppure truncated per indicare la sua incompletezza nei valori inferiori [Soliani (2010)].

Le modalità statistiche per analizzare i campioni con valori *non detect* sono numerose, ma nessuna è applicabile in tutte le situazioni. Secondo quanto riportato nelle linee guida ISPRA, si ritiene opportuno porre, in ogni caso e per qualsiasi distribuzione dell'insieme dei dati, i valori inferiori al limite di quantificazione pari al limite di quantificazione.

3.3 Calcolo statistiche descrittive

Nelle tabelle che riportano le statistiche descrittive sono riportati: il numero di osservazioni (nobs), il numero di dati censored (ncen), il valore minimo (min) e massimo (max), la media, la mediana, il range (definito come la differenza tra il valore massimo e minimo), la deviazione standard (sd) e la deviazione assoluta dalla mediana (mad), il coefficiente di variazione (cv), l'indice di asimmetria (skewness) e di curtosi (kurtosis).

3.4 Matrici di correlazione

Considerata la presenza di dati "censored" con un solo limite di quantificazione per parametro, per misurare il grado di relazione tra due variabili è stato utilizzato il coefficiente di correlazione rho di Spearman [Helsel (2012)].

Il metodo valuta l'esistenza della monotonicità, che è una condizione più generale rispetto a quella di linearità valutata col metodo parametrico di Pearson. In altri termini, la correlazione non parametrica risulta +1 quando all'aumentare della prima variabile aumenta anche la seconda, -1 quando all'aumentare della prima la seconda diminuisce, ma senza richiedere che tali incrementi siano costanti, come per la retta. In situazioni in cui non sussiste alcuna concordanza si avrà valore uguale a zero.

Le matrici di correlazione sono state sintetizzate graficamente mediante la rappresentazione con ellissi. L'ellisse viene usata per rappresentare graficamente l'entità della correlazione (un cerchio perfetto rappresenta un coefficiente di correlazione pari a 0, una retta pari a 1), mentre l'orientamento indica le correlazioni positive o negative. Per agevolare l'interpretazione del grafico, le correlazioni positive sono rappresentate in blu, quelle negative in rosso e l'intensità della colore è proporzionale all'intensità della correlazione. Nella parte superiore del grafico sono riportati i coefficienti di correlazione di Spearman. La x sopra l'ellisse indica che la correlazione non è statisticamente significativa (alpha=0.05).

Le elaborazioni sono state eseguite con il pacchetto corrplot [Wei (2013)].

3.5 Mappe di distribuzione

Tutti i dati sono stati descritti anche spazialmente mediante mappe (post map).

4 Suoli

Durante le perforazioni per la realizzazione dei 34 nuovi piezometri sono stati prelevati due campioni rimaneggiati per ciascun sondaggio, uno nella frangia capillare (indicato come orizzonte superficiale nella relazione) e uno immediatamente sotto (indicato come orizzonte profondo). Nei campioni superficiali sono state eseguite prove granulometriche, diffrattometriche, analisi chimiche e test di cessione, in quelli più profondi analisi chimiche e test di cessione.

4.1 Analisi diffrattometriche ai Raggi X (XRD)

I risultati dell'analisi diffrattometrica ai raggi X (XRD) per il riconoscimento delle fasi cristalline secondo UNI EN 13925-2:2006 sono riassunti in Tabella 1 e Figura 2. I rapporti di prova sono riportati nella "Relazione descrittiva delle indagini in sito ed in laboratorio" redatta da Geolavori srl.

Come si può vedere da Tabella 1, la fase mineralogica più abbondante è il quarzo, seguita da muscovite, dolomite, plagioclasio, clorite, calcite, microclino ed infine ortoclasio (presente in un solo campione). Per il campione prelevato in corrispondenza del piezometro pz25 è stata determinata solo una stima di abbondanza relativa.

Figura 2. Risultati dell'analisi diffrattometrica ai raggi X per punto di campionamento.

Tabella 1. Risultati analisi diffrattometrica ai raggi X per il riconoscimento delle fasi cristalline secondo UNI EN 13925-2:2006. Legenda: +++=componente principale, ++=componente presente in quantità media, +=componente presente in piccola quantità.

piezometro	quarzo %	muscovite %	dolomite %	plagioclasio %	calcite %	clorite %	microclino %	ortoclasio %
pz01	28	8	27	13	9	3	12	-
pz02	37	17	14	20	5	7	-	-
pz03	24	36	11	14	6	9	-	-
pz04	26	31	10	11	6	11	-	5
pz05	41	25	5	20	2	7	-	-
pz06	24	16	24	14	8	8	6	-
pz08	18	25	22	17	6	4	8	-
pz09	27	4	28	16	14	2	9	-
pz10	26	5	32	13	18	3	3	-
pzll	21	10	23	26	9	3	8	-
pz13	19	22	14	14	6	7	18	-
pz14	32	20	18	8	15	7	-	-
pz15	15	29	16	12	16	9	3	-
pz16	25	18	11	20	2	8	16	-
pz17	41	21	10	11	3	8	6	-
pz18	31	16	19	13	8	6	7	-
pz19	26	20	23	15	10	6	-	-
pz20	33	9	26	12	13	3	4	-
pz21	22	27	18	9	8	12	4	-
pz23	13	43	15	16	4	9		-
pz24	24	22	21	15	6	7	5	-
pz25	+++	+++	+	++	+++	++	+	-
pz26	33	21	17	13	6	7	3	-
pz27	25	23	18	12	9	9	4	-
pz28	33	22	15	11	5	10	4	-
pz29	18	28	17	12	8	14	3	-
pz30	24	15	14	29	3	5	10	-
pz31	25	24	15	13	4	13	6	-
pz33	24	22	17	12	5	15	5	-
pz34	29	19	19	11	8	10	4	-
pz35	31	11	14	25	4	5	10	-
pz36	24	15	21	20	10	6	4	-
pz37	30	35	12	5	10	8		-
pz38	33	20	11	14	7	10	5	-

4.2 Analisi granulometrica

Per granulometria di un terreno si intende la distribuzione delle singole particelle minerali. Per convenzione internazionale l'indagine granulometrica si effettua separando le particelle in base al loro diametro. La frazione di diametro superiore ai 2 mm costituisce lo "scheletro", mentre quella di diametro inferiore ai 2 mm viene denominata "terra fine".

Il campioni sono stati classificati sulla base delle caratteristiche granulometriche seguendo i sistemi di classificazione ufficiali proposti da ASTM (American Society for Testing and Materials), cioè l'USCS (Unified Soil Classification System) e da AGI (Associazione Geotecnica Italiana). Le curve granulometriche sono allegate alla "Relazione descrittiva delle indagini in sito ed in laboratorio" redatta da Geolavori srl.

In Tabella 2 sono riportati i rapporti granulometrici USCS e per la descrizione è stato seguito il criterio AGI (1977), secondo il quale il terreno è denominato gerarchicamente col nome della frazione percentualmente maggiore. La frazione inferiore è introdotta con il termine "con" (es. con sabbia) se la percentuale è compresa fra il 25% e 50%, oppure con il suffisso "oso" se la percentuale è fra il 10% e il 25%, oppure dal suffisso "oso" preceduto dal termine "debolmente" se la percentuale è compresa fra il 5% e il 10%. La frazione inferiore al 5% si trascura.

I campioni possono essere raggruppati in cinque gruppi, la cui distribuzione nello spazio è mostrata nella mappa di Figura 3. Il gruppo 1 è costituito dai due campioni caratterizzati da sabbia con una percentuale di ghiaia oltre il 15%, il gruppo 2 dai campioni sabbiosi con limo, il gruppo 3 dai campioni limosi sabbiosi, il gruppo 4 da quelli limosi con argilla e il gruppo 5 da quelli limosi con sabbia. I primi due gruppi corrispondono ai campioni in cui la frazione principale è la sabbia, gli ultimi tre a quelli in cui è il limo.

Procedendo da nordovest verso sudest si nota una progressiva riduzione della granulometria per effetto della deposizione di frazioni via via più fine, in linea con il modello de posizionale della Pianura Veneta ed in particolare del Bacino Scolante in Laguna di Venezia.

Figura 3. Distribuzione geografica dei rapporti granulometrici. Gruppo 1 è costituito dai due campioni caratterizzati da sabbia con una percentuale di ghiaia oltre il 15%, il gruppo 2 dai campioni sabbiosi con limo, il gruppo 3 dai campioni limosi sabbiosi, il gruppo 4 da quelli limosi con argilla e il gruppo 5 da quelli limosi con sabbia.

La lettura combinata di Tabella 1 e Tabella 2, consente, inoltre, di poter fare le seguenti considerazioni:

• il quarzo presenta la sua massima percentuale in campioni con forte componente sabbiosa (pz05, pz14 e pz20);

- la muscovite (silicato appartenente al gruppo delle miche) raggiunge la percentuale massima nei campioni a composizione prevalentemente limosa con presenza di argilla (es. pz03, pz15 e pz31), mentre quella minima in quelli a componente prevalentemente sabbiosa (es. pz01, pz09, pz10);
- il plagioclasio, il microclino e l'ortoclasio (feldspati) presentano la loro percentuale massima in campioni a prevalente componente sabbiosa (es. pz11, pz13, pz30 e pz35);
- la clorite (fillosilicati con formula chimica generica (MgFeAl)₈(SiAl)₈O₂₀(OH)₁₆) è più abbondante nei campioni con percentuale superiore al 30% di argille (es. pz4 e pz29);
- la calcite e la dolomite (carbonati rispettivamente di calcio e di calcio-magnesio), sono presenti nelle loro percentuali maggiori in campioni con componente preponderatamente sabbiosa (es. pz09 e pz10).

Tabella 2. Rapporti granulometrici dei campioni superficiali secondo il sistema di classificazione USCS e gruppo di appartenenza secondo l'analisi dei cluster.

piezometro	ghiaia %	sabbia %	limo %	argilla %	classificazione	gruppo
	>4.75mm	0.075-4.75 mm	0.075-0.002	<0.002 mm		
pz01	29,0	45,1	21,8	4,1	sabbia con ghiaia limosa	1
pz02	0,0	74,2	24,2	1,6	sabbia limosa	2
pz03	0,0	13,7	65,8	20,5	limo argilloso e sabbioso	3
pz04	0,0	18,3	47,5	34,1	limo con argilla sabbioso	4
pz05	0,0	53,5	38,4	8,1	sabbia con limo debolmente argillosa	2
pz06	0,0	22,7	65,1	12,2	limo sabbioso debolmente argilloso	3
pz08	0,0	42,0	52,9	5,1	limo con sabbia	5
pz09	0,0	78,0	20,1	1,9	sabbia limosa	2
pz10	0,0	71,6	25,6	2,7	sabbia con limo	2
pz11	0,0	55,2	37	7,8	sabbia con limo debolmente argillosa	2
pz13	0,0	53,5	43,5	3,0	sabbia con limo	2
pz14	0,0	65,4	31,3	3,2	sabbia con limo	2
pz15	0,0	1,8	58,6	39,6	limo con argilla	4
pz16	0,0	39,5	51,8	8,7	limo con sabbia debolmente argilloso	5
pz17	0,0	37,2	59,0	3,8	limo con sabbia	5
pz18	15,4	53,4	28,2	3,0	sabbia con limo ghiaiosa	1
pz19	0,0	39,7	56,4	3,9	limo con sabbia	5
pz20	0,0	79,6	18,9	1,5	sabbia limosa	2
pz21	0,0	21,1	70,3	8,6	limo sabbioso debolmente argilloso	3
pz23	0,0	46,9	48,9	4,2	limo con sabbia	5
pz24	0,0	31,6	59,9	8,5	limo con sabbia debolmente argilloso	5
pz25	1,6	16,1	75,9	6,3	limo sabbioso debolmente argilloso	3
pz26	2,9	23,9	66,9	6,3	limo sabbioso debolmente argilloso	3
pz27	2,4	49,1	43,3	5,3	sabbia con limo debolmente argillosa	2
pz28	0,6	40,6	46,7	12,1	limo con sabbia debolmente argilloso	5
pz29	0,0	4,0	58,0	38,1	limo con argilla	4
pz30	0,0	51,2	46,5	2,3	sabbia con limo	2
pz31	0,0	18,4	75,2	6,4	limo sabbioso debolmente argilloso	3
pz33	0,9	19,6	73,2	6,3	limo sabbioso debolmente argilloso	3
pz34	0,0	35,3	58,6	6,1	limo con sabbia debolmente argilloso	5
pz35	0,0	58,8	36,9	4,2	sabbia con limo	2
pz36	0,0	42,9	52,7	4,4	limo con sabbia	5
pz37	0,0	28,7	62,9	8,4	limo con sabbia debolmente argilloso	5
pz38	0,0	12,8	73,5	13,7	limo sabbioso e argilloso	3

4.2.1 Correlazioni analisi diffrattometrica ai raggi X e granulometrica

In Figura 4 sono riportate le ellissi e i coefficienti di correlazione di Spearman tra i risultati dell'analisi diffrattometrica ai raggi X e quella granulometrica. Argilla e limo presentano una correlazione positiva statisticamente significativa con muscovite e clorite, la sabbia negativa con muscovite e clorite e positiva con plagioclasio.

Figura 4. Ellissi di correlazione e coefficiente di correlazione di Spearman tra i risultati dell'analisi diffrattometrica ai raggi X e quella granulometrica.

4.3 Analisi chimiche

Per una migliore comprensione dei risultati relativi ai metalli, sono stati analizzati anche alcuni parametri del suolo che sono strettamente connessi con il comportamento chimico dei metalli pesanti e con la loro biodisponibilità in particolare [Giandon et al. (2011)]:

- tessitura (le argille presenti nei suoli possono infatti determinare fenomeni di adsorbimento dei metalli);
- pH (le variazioni di pH influenzano la solubilità dei metalli);
- sostanza organica (la sostanza organica, come le argille, può influire sui processi di adsorbimento);
- capacità di scambio cationico (modifica e può influenzare i processi di adsorbimento);
- calcare totale.

I metalli oggetto di determinazione sono stati: antimonio, arsenico, berillio, cadmio, cobalto, cromo, rame, mercurio, nichel, piombo, selenio, stagno, vanadio, zinco.

I risultati analitici per i campioni prelevati dall'orizzonte superficiale e profondo sono riportati in Appendice B, le mappe di distribuzione dei singoli parametri In Appendice E.

Le determinazioni analitiche sono state effettuate presso il Dipartimento Regionale Laboratori ARPAV.

4.3.1 Tessitura del suolo

La tessitura di un suolo è definita dalla percentuale (in peso) con cui sono presenti le tre componenti della terra fine: sabbia, limo e argilla. In base alla tessitura il terreno può essere classificato secondo schemi ben definiti. Uno dei più usati è il triangolo USDA (United States Department of Agriculture).

In Figura 5 i singoli campioni prelevati dall'orizzonte superficiale e profondo sono rappresentati nel triangolo tessiturale USDA.

Come ipotizzabile, i campioni prelevati dall'orizzonte profondo hanno un maggior contenuto di limo e argilla e presentano un maggior varietà di classi tessiturali rispetto a quelli superficiali, che appartengono tutti alle classi franche (anche dette "di medio impasto"). I due campioni sabbiosi sono stati prelevati in corrispondenza del pz01 e pz09, quello limoso nel pz33 (Figura 6).

La classificazione dei singoli campioni è riportata in Tabella B-3.

Per meglio evidenziare il comportamento dei diversi parametri analizzati in funzione della percentuale di sabbia, limo e argilla, i valori misurati sono riportati nei diagrammi ternari della tessitura (Figura 7-Figura 14). In generale la capacità di scambio cationico, il carbonio organico e i quattro metalli presentano i valori più elevati nei campioni dell'orizzonte profondo con maggior contenuto di argilla e limo.

orizzonte superficiale

orizzonte profondo

Figura 5. Triangolo USDA per la classificazione dei campioni superficiali e profondi in base alla tessitura.

Legenda: Sa (sand): sabbiosa, LoSa (loamy sand): sabbioso franco, SaLo (sandy loam): franco sabbiosa, Lo (loam): franca, SiLo (silty loam): franco limosa, Si (silt): limosa, CILo (clay loam): franco argillosa, SiCILo (silty clay loam): franco limoso argillosa, SaCILo (sandy clay): argilloso sabbiosa, SiCI (silty clay): argilloso limosa, CI (clay): argillosa.

Tabella 3. Numero di campioni per classe di tessitura USDA. Legenda: Sa (sand): sabbiosa, LoSa (loamy sand): sabbioso franco, SaLo (sandy loam): franco sabbiosa, Lo (loam): franca, SiLo (silty loam): franco limosa, Si (silt): limosa, SiCILo (silty clay loam): franco limoso argillosa, SiCI (silty clay): argilloso limosa.

Figura 6. Distribuzione geografica della tessitura dei campioni prelevati dall'orizzonte superficiale e profondo. Legenda: Sa (sand): sabbiosa, LoSa (loamy sand): sabbioso franco, SaLo (sandy loam): franco sabbiosa, Lo (loam): franca, SiLo (silty loam): franco limosa, Si (silt): limosa, SiCILo (silty clay loam): franco limoso argillosa, SiCI (silty clay): argilloso limosa.

Figura 7. pH e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

Figura 8. Calcare totale e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

Figura 9. CSC e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

Figura 10. Carbonio organico e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

Figura 11. Concentrazione di alluminio e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

Figura 12. Concentrazione di arsenico e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

Figura 13. Concentrazione di ferro e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

Figura 14. Concentrazione di manganese e diagrammi ternari della tessitura per i campioni prelevati dai due orizzonti.

4.3.1.1 Correlazioni tra variabili

In Figura 15 sono riportate le ellissi e i coefficienti di correlazione di Spearman tra i 4 metalli di interesse e tra questi e i parametri del suolo.

Negli orizzonti superficiali i quattro metalli appaiono correlati positivamente tra loro e con il carbonio organico, e negativamente con il calcare totale; ferro e manganese risultano correlati positivamente anche con il contenuto di limo e argilla, l'alluminio solo con quello di argilla, tutti e tre i metalli sono correlati negativamente con il contenuto di sabbia. Solo l'alluminio mostra una correlazione negativa con il pH.

Per i campioni di suolo profondo la correlazione tra i quattro metalli è ancora più forte e ciascuno di essi è correlato positivamente al carbonio organico, alla percentuale di argilla e limo e negativamente alla percentuale di sabbia e al pH; ferro e alluminio sono correlati positivamente anche alla CSC.

Riepilogando, suoli con composizione granulometrica caratterizzata da argilla e limi e quelli con un alto contenuto di materia organica hanno una elevata capacità di adsorbimento e una forte abilità a legare gli elementi metallici. I suoli sabbiosi, caratterizzati da una bassa capacità di adsorbimento e acidità, adsorbono debolmente i metalli. I suoli con un alta capacità di adsorbimento per i cationi (i.e. suoli contenenti grandi quantità di minerali argillosi), hanno l'abilità di accumulare elementi metallici.

In Figura 16 sono riportate le ellissi e i coefficienti di correlazione di Spearman tra i 4 metalli di interesse prelevati dai campioni dell'orizzonte superficiale e i risultati dell'analisi diffrattometrica ai raggi X. Tutti e quattro i metalli sono correlati positivamente alla clorite. Alluminio, ferro e manganese mostrano anche una correlazione positiva con la muscovite e negativa con dolomite e plagioclasio.

Figura 15. Ellissi di correlazione e coefficiente di correlazione di Spearman per i campioni di suolo prelevati dall'orizzonte superfiale e profondo. La x sopra l'ellisse indica che la correlazione non è statisticamente significativa (p>0.05).

Figura 16. Ellissi di correlazione e coefficiente di correlazione di Spearman tra i metalli dei campioni di suolo prelevati dall'orizzonte superfiale e i risultati dell'analisi diffrattometrica ai raggi X.

5 Acque sotterranee

5.1 Le campagne di monitoraggio

Sono state effettuate 4 campagne di monitoraggio secondo il calendario riportato in Tabella 4. Il piezometro pz50 è stato distrutto e pertanto è stato possibile campionarlo sole nelle prime due campagne. In totale sono stati prelevati ed analizzati 198 campioni relativi a 50 piezometri.

5.1.1 Il campionamento

Attualmente non sono disponibili metodi standardizzati o quantomeno ufficiali di campionamento ed analisi. In riferimento a questo aspetto è stato dunque necessario definire dei protocolli standard per il prelievo nelle matrici di interesse, acque sotterranee e suolo.

Questa fase del progetto si è rilevata estremamente delicata, infatti il campione è la fonte di informazione fondamentale; pertanto se il suo prelievo non è effettuato correttamente, esso non rappresenta in maniera esaustiva il sistema in studio, e quindi, diventano inutili l'accuratezza e la precisione in fase di preparazione in laboratorio ed in fase analitica, nonché le elaborazioni in fase interpretativa. Inoltre nella bassa pianura veneziana, specie nella cosiddetta falda del riporto, la presenza di materiali fini determina spesso la presenza di campioni di acqua con torbidità ed elevata presenza di corpo di fondo. Le modalità di prelievo e trattamento campione risultano in tal caso particolarmente importanti.

Nell'ambito dell'attività di *audit* ambientale per la realizzazione del Passante di Mestre, ARPAV ha predisposto un protocollo operativo seguito nelle procedure di campionamento. Nello specifico, per il campionamento dell'acqua di falda si è deciso di procedere tramite spurgo e prelievo a basso flusso (portata tipica 0,1-0,5 l/min, comunque sempre <1 l/min [USEPA (1996)]), con contestuale presenza di sonda multiparametrica al fine di controllare i valori di pH, conducibilità, temperatura, ecc. (*stabilizzazione dei parametri*). In relazione alla sola aliquota per i metalli pesanti si è convenuto di procedere al prelievo, previa misurazione in campo della torbidità, prevedendo in ogni caso la filtrazione e acidificazione in campo.

L'utilizzo di tale metodica ha consentito di raggiungere una maggiore e più sicura ripetibilità del dato analitico e di risolvere molti problemi legati a falsi postivi (specie per la presenza di composti inorganici) determinati da una non corretta procedura di spurgo e campionamento dell'acqua.

I campionamenti sono stati effettuati dal personale del Servizio Osservatorio Acque Interne con la collaborazione del Dipartimento Provinciale di Venezia.

numero campagna	n campioni	da	a
1	50	27 giugno 2013	04 luglio 2013
2	50	23 settembre 2013	02 ottobre 2013
3	49	21 gennaio 2014	06 febbraio 2014
4	49	28 aprile 2014	06 maggio 2014

Tabella 4. Calendario	campagne	di monitoraggio
-----------------------	----------	-----------------

5.2 I parametri misurati

I parametri analizzati e il relativo limite di quantificazione (LOQ) sono riportati in Tabella 5.

Oltre alle analisi per la determinazione delle concentrazioni dei parametri di interesse è stato opportuno prevedere la determinazione di ulteriori parametri caratteristici della falda che influenzano la mobilità e le reazioni chimiche: pH, conducibilità, potenziale redox (per determinare lo stato di ossidazione ambientale), ossigeno disciolto, TOC (presenza in generale di composti organici), cloruri e nitrati (indicatori di contaminazione antropica) [Müller et al. (2006)].

A causa di problemi con la strumentazione non è stato possibile determinare i parametri di campo in tutti i campioni.

Le analisi chimiche sono state realizzate dal Dipartimento Regionale Laboratori, Servizio Laboratori di Venezia.

Tabella 5. Parametri misurati nei campioni di acque sotterranee. In grassetto i parametro oggetto della definizione dei valori di fondo.

Parametro	unità di misura	LOQ	note
рН	unità pH		determinazione sul campione tal quale
conducibilità elettrica a 20°C	µS/cm		determinazione sul campione tal quale
ossigeno disciolto	mg/l		determinazione sul campione tal quale
potenziale redox	mV		misurato in campo
TOC	mg/l	0.5	determinazione sul campione tal quale
cloruri		2	determinazione sul campione tal quale
NO3		1	determinazione sul campione tal quale
solfati	mg/l	1	determinazione sul campione tal quale
arsenico	µg/l	1	determinazione sulla fase disciolta
ferro	hð\	5	determinazione sulla fase disciolta
manganese	hð\	1	determinazione sulla fase disciolta
ione ammonio (NH4)	mg/l	0.02	determinazione sulla fase disciolta
alluminio	hð\	1	determinazione sulla fase disciolta

5.3 Il dataset completo

In questo paragrafo è presentata una prima analisi generale di tutte le variabili osservate per i 50 piezometri, nelle quattro campagne di monitoraggio. I risultati analitici sono riportati in Appendice C.

In Tabella 7 sono riportate le statistiche di sintesi per parametro e campagna di monitoraggio sull'intero dataset. Per tutti i parametri, tranne pH e conducibilità, il coefficiente di variazione è superiore a 0.5 e pertanto la media non è un indice appropriato per la rappresentazione dei dati. Essendo la percentuale di dati inferiori al limite di quantificazione inferiore al 50% per tutti i parametri, eccetto i nitrati, la mediana può essere considerata un buon stimatore della tendenza centrale. I coefficiente di skewness maggiori di zero indicano che le distribuzioni hanno una coda verso destra.

Le statistiche sono rappresentate graficamente mediante boxplot per dati censored (Figura 17). Con la presenza di valori non-detect, il Box-and-Whiskers di Tukey deve essere modificato, poiché descrive solamente i valori detect. Esso viene troncato sul valore del limite di quantificazione rappresentato dalla linea orizzontale, la parte di grafico sotto tale linea deve essere ignorata. I grafici sono stati realizzati con la funzione cenboxplot della libreria NADA che stima i percentili con il metodo ROS (regression on order statistics). I dati sono raggruppati per campagna di monitoraggio e rappresentati con scala logaritmica considerato che per la maggior parte dei parametri i valori misurati differiscono di alcuni ordini di grandezza. I grafici permettono di valutare immediatamente il range, la distribuzione e la proporzione di osservazioni inferiori al limite di quantificazione.

Avendo a disposizione solo quattro campagne e un anno di monitoraggio, non è possibile eseguire un'analisi dei trend o evidenziare la presenza di eventuali ciclicità. Per valutare se esiste una differenza statisticamente significativa tra i risultati ottenuti nelle quattro campagne è stata utilizzata una generalizzazione del test non parametrico di Wilcoxon, noto anche come Peto-Prentice test [Helsel (2012)]. Questo test determina se le funzioni di distribuzione di due o più gruppi sono la stesse, o se almeno una di esse è diversa. Per il test è stata utilizzata la funzione cendiff() del pacchetto NADA. I risultati del test evidenziano che solo per il ferro (chisq=10, p-value<0.05), almeno una delle quattro distribuzioni di concentrazione differisce dalle altre (Tabella 6). Per individuare qual è la campagna che differisce dalle altre è stato utilizzato lo stesso test applicato a tutte le possibili coppie di campagne con un livello di significatività del 0.0083 (in base alla correzione di Bonferroni il livello complessivo di significatività scelto deve essere diviso per il numero delle possibili coppie i.e. 0.05/6). In questo modo risulta che la terza campagna differisce sia dalla prima che dalla quarta, ma non dalla seconda.

Tabella 6. a) Risultati del test di Peto-Prentice per singolo parametro. b) Risultati del test di Peto-Prentice per il confronto multiplo per il ferro.

a)				b)			
sigla	chisq	df	p-value	ferro	chisq	df	Ŗ
рН	5,5	3	0,141	1-2	0,2	1	
CE	0,8	3	0,841	1-3	8,9	1	C
TOC	0,6	3	0,886	1-4	0	1	
NO3	4,4	3	0,218	2-3	5,3	1	
cloruri	2	3	0,565	2-4	0,1	1	
solfati	1,9	3	0,599	3-4	7,6	1	0
ammoniaca	2,7	3	0,447				
alluminio	6,4	3	0,095				
arsenico	6,6	3	0,0844				
ferro	10	3	0,0186				
manganese	3,3	3	0,348				

Figura 17. Boxplot dei valori dei diversi parametri rilevati nelle quattro campagne di monitoraggio. Se sono presenti valori undetected è presente una linea orizzontale uguale al limite di quantificazione e la parte di grafico sotto tale linea è stata stimata con il metodo della regressione ROS.

Tabella 7. Statistiche di sintesi per parametro e campagna di monitoraggio. Legenda: nobs=numero dati; ncen=numero dati inferiori al limite di quantificazione; sd=deviazione standard; mad= deviazione assoluta dalla mediana; cv=coefficiente di variazione; sk=indice di asimmetria; kur=indice di curtosi. Le statistiche sono calcolate sostituendo a <LOQ il valore LOQ.

parametino compagina numedia media media media mode corr site kur PH 3 49 0 7,09 7,1 6,67 7,5 0,88 0,184 0,022 0,020 0,204														
1 50 0 7.05 7.5 0.8 0.190 0.22 0.026 0.027 0.027 <	parametro	campagna	nobs	ncen	media	mediana	min	max	range	sd	mad	CV	sk	kur
pH 2 50 0 7,12 7,1 6,7 7,5 0.8 0.148 0.148 0.028 1.299 2.360 4 49 0 7,05 7 6,7 7,5 0.8 0.198 0.148 0.028 1.299 2.360 CE 20 50 0 840.09 777 170 213 2033 246.01 23.88 0.448 0.028 1.299 2.361 3 49 0 844.67 612 170 213 303.672 213.444 0.368 1.750 6.52 2 50 1 2.86 1.75 0.51 1.42 1.37 2.544 0.997 3.486 1.757 0.54 2.157 0.133 0.303.672 21.144 0.338 1.760 6.522 7.76 1.922 1.164 0.44 0.997 3.486 1.6777 10C1 2.50 0 3.44 2.81 1.033 7.76 1.		1	50	0	7,08	7,05	6,7	7,5	0,8	0,190	0,222	0,027	0,295	-0,328
pH 3 49 0 7,09 7,1 6,87 7,7 0,9 0,188 0,179 0,148 0,025 0,164 0,319 CE [20 °C] 2 50 0 844,09 777 6,77 1,52 1233 240,77 30,143 226,838 0,439 2,331 9,779 CE [20 °C] 2 50 0 844,67 170 2183 2013 303,472 241,644 0,388 2,077 4,327 10C 1 2,81 2,05 0.5 14,2 133 303,472 241,644 0,388 1,507 4,22 1 50 1 2,81 2,05 0.5 14,6 1,137 2,544 0,984 0,987 1,438 10C 2,50 1 2,21 0,3 7,9 7,6 1,922 1,186 0,697 1,282 2,390 10C 2,501 3 431 428 44,081 1,779 1,822		2	50	0	7,12	7,1	6,7	7,5	0,8	0,184	0,148	0,026	-0,060	0,211
4 49 0 7.05 7 6.7 7.5 0.8 0.179 0.148 0.023 0.141 0.319 CE (20 °C) 2 50 0 848.02 780.5 278.152 278.44 169.016 328.8 0.479 1.552 97.444 169.016 3.88 2.077 3.88 2.077 3.88 0.479 2.18.2 0.65 1.64 1.61 1.552 97.444 1.69.07 3.486 1.69.77 3.30.672 241.64 0.388 1.69.77 3.486 1.69.77 3.30.672 241.64 0.388 1.69.77 3.29.7 7.45 1.22 1.99 3.49 0.27.6 2.1 0.3 7.7 7.6 1.922 1.186 0.69.77 1.28.2 0.99 1.28.2 0.99 1.28.2 0.99 1.48 1.49 0.24.42 2.57 1.36 3.33 2.64 4.39 1.42 0.39 1.14 0.397 1.18.5 0.397 1.35.1 3.99 2.16.10 <t< td=""><td>рн</td><td>3</td><td>49</td><td>0</td><td>7,09</td><td>7,1</td><td>6,8</td><td>7,7</td><td>0,9</td><td>0,198</td><td>0,148</td><td>0,028</td><td>1,299</td><td>2,360</td></t<>	рн	3	49	0	7,09	7,1	6,8	7,7	0,9	0,198	0,148	0,028	1,299	2,360
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4	49	0	7,05	7	6,7	7,5	0,8	0,179	0,148	0,025	0,616	0,319
CE 2 50 0 80.82 780.5 427 1952 1525 293.444 146.016 0.338 2.097 6.327 4 49 0 844.67 812 170 2183 2013 309.799 214.644 0.387 1.525 7.525 6.522 1 50 1 2.86 1.75 0.5 1.64 1.61 2.550 1.112 0.907 3.486 1.652 2 50 1 2.86 1.75 0.5 1.42 1.37 2.544 0.907 3.489 1.650 0.907 4 49 0 2.51 1.9 0.4 8.6 8.2 1.713 0.890 0.682 1.564 2.499 1 50 0 48.64 2.2 571 3.0 4.492 1.301.44 8.6 8.2 1.717 1.442 4.899 1.410 3.14 4.84 1.7291 1.442 4.899 1.101 3.1		1	50	0	844,09	797	125,3	2533	2407,7	370,613	226,838	0,439	2,531	9,779
CE [2,0] 3 49 0 844,67 812 170 2183 2013 309,79 213,494 0.347 1,822 6,700 1 50 1 2,811 2,05 0.5 1.64 16.1 2,550 1,112 0,907 3.464 6,872 2 50 1 2,86 1,75 0,5 14.64 1,61 0,964 0,890 2,329 7,245 3 49 0 2,251 1,9 0,4 8.6 8.2 1,713 0,890 6,821 5,42 2,490 4 49 0 38,46 25 3 431 428 44,081 1,771 1,646 5,161 30,114 4 49 0 43,53 20 2 543 541 84,546 1,771 1,642 3,555 504 1 47,60 27 1 351 350 44,23 2,41 2,580 51,135 1,142		2	50	0	820,82	780,5	427	1952	1525	293,444	169,016	0,358	2,097	6,327
4 49 0 848.86 835 233 2164 1933 303.672 241,644 0.358 1.750 6.522 IOC 2 50 1 2.86 1.75 0.5 1.64 16.1 2.554 0.969 2.827 7.245 3 49 0 2.76 2.1 0.3 7.9 7.6 1.922 1.186 0.690 2.527 7.245 4 49 0 2.51 1.9 0.4 8.6 8.2 1.713 0.890 0.646 1.564 2.140 2 50 0 3.846 25 3 431 428 40.031 1.750 1.4232 2.1140 2 50 0 3.846 27 1 3.51 3.50 4.244 31.135 1.349 2.888 10.207 3 49 1 4.237 24 1 25 2.944 5.2174 2.6487 1.231 2.868	CE (20 °C)	3	49	0	844,67	812	170	2183	2013	309,759	213,494	0,367	1,828	6,710
I S0 I 2.81 2.05 0.5 16.4 16.1 2.550 1.112 0.907 3.486 16.977 TOC 2 50 1 2.26 1.07 5.5 14.2 13.7 2.544 0.890 2.329 7.245 4 49 0 2.51 1.9 0.4 8.6 8.2 1.713 0.890 0.662 1.564 2.499 2 50 0 38.46 25 3 431 428 64.081 17.791 1.666 5.161 30.145 30.149 0 43.53 20 2 543 541 84.526 13.135 1.347 2.888 10.207 SO4 2 50 1 27.748 20.5 1 116 115 25.806 25.204 0.397 1.616 3.565 3 49 1 42.37 2.4 1 295 284 52.174 2.6487 1.219 2.18		4	49	0	848,86	835	233	2166	1933	303,672	241,664	0,358	1,750	6,522
TOC 2 50 1 2.86 1.75 0.5 14.2 13.7 2.544 0.944 0.890 2.329 7.245 4 49 0 2.76 2.11 0.03 7.9 7.6 1.921 1.166 0.697 1.282 0.909 2 50 0 48.72 2.4 2 571 569 100.543 18.533 2.064 4.589 2.1.140 3 49 0 38.10 20 2 492 490 74.867 16.309 1.855 5.130 295.18 4 49 0 43.53 20 2 543 544 42.777 1.466 5.130 295.18 3 49 1 47.40 27 1 351 350 64.236 31.135 1.349 2.888 10.027 SO4 4 49 2 40.12 25 1 219 218 48.077 31.135		1	50	1	2,81	2,05	0,5	16,6	16,1	2,550	1,112	0,907	3,486	16,977
IDC 3 49 0 2,76 2,1 0,3 7,9 7,6 1,922 1,186 0,697 1,282 0,909 4 49 0 2,51 1,9 0,4 8,6 8,2 1,713 0,890 0,682 1,544 2,499 2 50 0 38,46 25 3 431 428 64,081 17,791 1,464 4,599 21,110 3 49 0 38,10 20 2 433 541 84,564 11,791 1,492 4,500 27,121 4 49 0 43,53 20 2 543 541 85,64 17,791 1,492 49,00 27,121 50 1 27,48 20,5 1 116 115 25,806 25,204 0,999 1,616 3,565 50 3 49 4 40,12 25 1 197 2,888 10,922 9,910 <t< td=""><td>100</td><td>2</td><td>50</td><td>1</td><td>2,86</td><td>1,75</td><td>0,5</td><td>14,2</td><td>13,7</td><td>2,544</td><td>0,964</td><td>0,890</td><td>2,329</td><td>7,245</td></t<>	100	2	50	1	2,86	1,75	0,5	14,2	13,7	2,544	0,964	0,890	2,329	7,245
4 49 0 2,51 1,9 0,4 8,4 8,2 1,713 0,890 0,682 1,544 2,499 2 50 0 48,72 24 2 571 569 100,543 18,533 2.064 4,589 21,140 3 49 0 38,10 20 2 543 541 84,546 17,791 1,942 4,950 27,121 4 49 0 43,53 20 2 543 541 84,546 17,717 1,942 4,950 27,121 3 49 1 42,37 24 1 255 294 52,174 26,667 1,231 2,868 10,076 4 49 2 40,12 25 1 217 28 60,000 1,961 3,355 1,36 3,276 0,000 1,962 2,276 5,736 NO3 2 50 40 4,06 1 1<37	IUC	3	49	0	2,76	2,1	0,3	7,9	7,6	1,922	1,186	0,697	1,282	0,909
I 50 0 48,72 24 2 571 569 100,543 18,533 2,064 4,589 21,140 2 50 0 38,10 20 2 492 490 74,867 16,309 1,945 5,130 29,518 4 49 0 43,53 20 2 543 541 84,546 17,791 1,942 49,50 27,121 1 50 1 47,60 27 1 351 350 64,236 31,135 1,349 2,888 10,207 2 50 1 27,48 20,5 1 116 115 25,806 25,204 0,393 1,614 3,656 44 9 40,12 25 1 219 218 48,077 31,135 1,199 2,277 5,736 1 50 32 4,04 1 1 37 36 8,221 0,000 2,051 3,259		4	49	0	2,51	1,9	0,4	8,6	8,2	1,713	0,890	0,682	1,564	2,499
Cl 2 50 0 38,46 25 3 431 428 64,081 17,791 1,666 5,161 30,114 3 49 0 38,10 20 2 492 490 74,867 16,309 1,942 4,950 27,121 4 49 0 43,53 20 2 543 541 84,546 17,791 1,942 4,950 27,121 2 50 1 27,48 20,5 1 116 115 25,806 25,204 0,939 1,616 3,565 3 49 1 42,37 24 1 295 294 52,174 26,687 1,231 28,88 10,992 2,775 7,786 10 50 32 4,04 1 1 37 36 8,097 31,135 1,498 1,592 2,979 8,101 103 49 20 50,40 1,13 1,10 112		1	50	0	48,72	24	2	571	569	100,543	18,533	2,064	4,589	21,140
Cl 3 49 0 38,10 20 2 492 490 74,867 16,309 1,965 5,130 29,518 4 49 0 43,533 200 2 543 541 84,546 17,771 1,942 4,950 27,121 SO4 2 500 1 47,60 27 1 351 350 64,236 31,135 1,349 2,888 10,207 20 1 27,48 20,5 1 219 218 48,097 31,135 1,349 2,888 10,027 4 49 2 40,12 25 1 219 218 48,097 31,135 1,199 2,277 5,736 1033 49 28 4,92 1 1 37 36 8,21 0,000 2,051 3,259 10,762 1034 49 2 3,05 1,36 0,02 2,3,4 23,34 7,645 0,000		2	50	0	38,46	25	3	431	428	64,081	17,791	1,666	5,161	30,114
4 49 0 43,53 20 2 543 541 84,546 17,791 1,942 4,950 27,121 SO4 3 1 50 1 47,60 27 1 351 350 64,234 31,135 1,349 2888 10,207 3 49 1 42,37 24 1 295 294 52,074 26,687 1,231 2,868 10,962 4 49 2 40,12 25 1 219 218 48,079 31,135 1,199 2277 5,736 1 50 32 4,04 1 1 37 36 8,221 0,000 2,035 2,799 8,101 NO3 49 28 4,92 1 1 13 1212 17,545 0,000 2,051 3,259 10,762 1 50 2 3,05 1,36 0,02 2,44 23,38 4,762 1,698<	CI	3	49	0	38,10	20	2	492	490	74,867	16,309	1,965	5,130	29,518
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	49	0	43,53	20	2	543	541	84,546	17,791	1,942	4,950	27,121
SO4 2 50 1 27,48 20,5 1 116 115 25,806 25,204 0,939 1,616 3,565 3 49 1 42,37 24 1 295 294 52,174 26,687 1,211 2,868 10,962 4 49 2 40,04 1 1 37 36 8,221 0,000 2,035 2,979 8,101 NO3 2 50 40 4,06 1 1 37 36 8,221 0,000 2,035 2,799 8,101 A 49 28 4,92 1 1 50 49 10,087 0,000 2,051 3,259 10,762 4 49 30 5,86 1 1 113 112 17,545 0,000 2,996 5,203 3,0140 1 50 3 3,70 0,78 0,02 14,48 1,071 3,133 1,141		1	50	1	47,60	27	1	351	350	64,236	31,135	1,349	2,888	10,207
SO4 3 49 1 42,37 24 1 295 294 52,174 26,687 1,231 2,868 10,962 4 49 2 40,12 25 1 219 218 48,097 31,135 1,199 2,277 5,736 1 50 32 4,04 1 1 37 36 8,221 0,000 2,035 2,999 8,101 NO3 2 50 40 4,06 1 1 34 33 7,963 0,000 1,961 2,786 6,007 4 49 30 5,86 1 1 113 112 17,545 0,000 2,976 5,203 3,0140 NH4 3 49 6 2,07 0,62 0,02 1,143 1,141 3,014 0,890 1,454 1,772 2,334 4 49 3 3,08 0,73 0,02 18,32 18,34 4,567<	00 I	2	50	1	27,48	20,5	1	116	115	25,806	25,204	0,939	1,616	3,565
4 49 2 40.12 25 1 219 218 48.097 31.135 1.199 2.277 5.736 NO3 2 50 40.0 1 1 37 36 8.221 0.000 2.035 2.999 8.101 2 50 40 4.06 1 1 34 33 7.963 0.000 1.961 2.786 6.907 4 49 30 5.86 1 1 113 112 17.545 0.000 2.996 5.203 30.140 4 49 3 3.05 1.36 0.02 24.5 40.48 7.068 1.067 1.911 3.490 15.034 4 49 3 3.06 0.73 0.02 18.32 18.3 4.567 1.053 1.442 1.911 3.223 A1 50 3 9.10 2 1 194 193 31.574 1.483 3.470 5.2	SO4	3	49	1	42,37	24	1	295	294	52,174	26,687	1,231	2,868	10,962
NO3 1 50 32 4,04 1 1 37 36 8,221 0,000 2,035 2,999 8,101 NO3 3 49 28 4,92 1 1 34 33 7,963 0,000 1,961 2,786 6,907 4 49 30 5,86 1 1 113 112 17,545 0,000 2,051 3,259 10,762 4 49 30 5,86 1 1 113 112 17,545 0,000 2,976 5,203 30,140 1 50 2 3,05 1,36 0,02 23,4 2,338 4,762 1,698 1,677 1,911 3,490 15,034 4 49 3 3,08 0,73 0,02 18,32 18,32 1,627 1,053 1,482 1,911 3,223 1 50 3 9,10 2 1 194 193 31,574 <td></td> <td>4</td> <td>49</td> <td>2</td> <td>40,12</td> <td>25</td> <td>1</td> <td>219</td> <td>218</td> <td>48,097</td> <td>31,135</td> <td>1,199</td> <td>2,277</td> <td>5,736</td>		4	49	2	40,12	25	1	219	218	48,097	31,135	1,199	2,277	5,736
NO3 2 50 40 4,06 1 1 34 33 7,963 0,000 1,961 2,786 6,907 3 49 28 4,92 1 1 50 49 10,087 0,000 2,051 3,259 10,762 4 49 30 5,86 1 1 113 112 17,545 0,000 2,976 5,203 30,140 1 50 2 3,05 1,36 0,02 20,34 23,38 4,782 1,678 1,569 2,680 7,693 NH4 3 49 6 2,07 0,62 0,02 11,41 3,014 0.890 1,454 1,772 2,334 4 49 3 3,08 0,73 0.02 18,32 18,33 4,567 1,053 1,482 1,911 3,225 A1 50 3 9,10 2 1 112 1,633 3,470 5,205 <t< td=""><td></td><td>1</td><td>50</td><td>32</td><td>4,04</td><td>1</td><td>1</td><td>37</td><td>36</td><td>8,221</td><td>0,000</td><td>2,035</td><td>2,999</td><td>8,101</td></t<>		1	50	32	4,04	1	1	37	36	8,221	0,000	2,035	2,999	8,101
NO3 3 49 28 4,92 1 1 50 49 10,087 0,000 2,051 3,259 10,762 4 49 30 5,86 1 1 113 112 17,545 0,000 2,051 3,259 10,762 NH4 50 2 3,05 1,36 0,02 23,4 23,38 4,782 1,698 1,569 2,680 7,693 NH4 3 49 6 2,07 0,62 0,02 40,5 40,48 7,068 1,067 1,911 3,490 15,034 4 49 3 308 0,73 0,02 18,32 18,3 4,567 1,053 1,482 1,911 3,223 41 50 3 9,10 2 1 194 193 31,574 1,483 3,470 5,205 2,757 A1 3 49 4 3,33 2 1 18 17 3,57		2	50	40	4,06	1	1	34	33	7,963	0,000	1,961	2,786	6,907
4 49 30 5,86 1 1 113 112 17,545 0,000 2,996 5,203 30,140 NH4 50 2 3,05 1,36 0,02 23,4 23,38 4,782 1,698 1,569 2,680 7,693 2 50 3 3,70 0,78 0,02 40,5 40,48 7,068 1,067 1,911 3,490 15,034 4 49 3 3,08 0,73 0,02 18,32 18,3 4,567 1,053 1,482 1,911 3,223 1 50 3 9,10 2 1 194 193 31,574 1,483 3,470 5,205 2,756 2 50 1 11,90 3 1 224 223 32,682 2,965 2,746 5,931 38,014 3 49 4 3,33 2 1 18 17 3,579 1,483 1,413	NO3	3	49	28	4,92	1	1	50	49	10,087	0,000	2,051	3,259	10,762
NH4 1 50 2 3.05 1.36 0.02 23.4 23.38 4.782 1.698 1.569 2.680 7.693 3 49 6 2.07 0.62 0.02 40.5 40.48 7.068 1.067 1.911 3.490 15.034 4 49 3 3.08 0.73 0.02 18.32 18.3 4.567 1.053 1.482 1.911 3.223 1 50 3 9.10 2 1 194 193 31.574 1.483 3.470 5.205 27.576 2 50 1 11.90 3 1 224 223 32.682 2.965 2.746 5.931 38.014 3 49 4 3.33 2 1 31 30 4.701 1.483 1.413 4.649 2.5652 4 49 1 3.33 2 1 18 17 3.579 1.483 1.		4	49	30	5,86	1	1	113	112	17,545	0,000	2,996	5,203	30,140
NH4 2 50 3 3.70 0.78 0.02 40.5 40.48 7.068 1.067 1.911 3.490 15.034 4 49 3 3.08 0.73 0.02 11.43 11.41 3.014 0.890 1.454 1.772 2.334 AI 50 3 9.10 2 1 194 193 31.574 1.483 3.470 5.205 27.576 AI 50 3 9.10 2 1 194 193 31.574 1.483 3.470 5.205 27.576 AI 49 4 3.33 2 1 31 30 4.701 1.483 1.413 4.649 25.652 4 49 1 3.33 2 1 18 17 3.579 1.483 1.076 2.749 8.167 As 49 10 31.76 9 1 240 239 45.364 14.085 1.5		1	50	2	3,05	1,36	0,02	23,4	23,38	4,782	1,698	1,569	2,680	7,693
NH4 3 49 6 2.07 0.62 0.02 11,43 11,41 3.014 0.890 1,454 1,772 2.334 4 49 3 3.08 0.73 0.02 18,32 18,3 4,567 1.053 1,482 1,911 3.223 AI 50 3 9.10 2 1 194 193 31,574 1,483 3,470 5.205 27,576 2 50 1 11,90 3 1 224 223 32,682 2,965 2,746 5,931 38,014 3 49 4 3,33 2 1 31 30 4,701 1,483 1,413 4,649 25,652 4 49 1 3,33 2 1 18 17 3,579 1,483 1,076 2,749 8,167 As 2 50 7 28,98 10,5 1 240 239 45,366 14,085 </td <td></td> <td>2</td> <td>50</td> <td>3</td> <td>3,70</td> <td>0,78</td> <td>0,02</td> <td>40,5</td> <td>40,48</td> <td>7,068</td> <td>1,067</td> <td>1,911</td> <td>3,490</td> <td>15,034</td>		2	50	3	3,70	0,78	0,02	40,5	40,48	7,068	1,067	1,911	3,490	15,034
4 49 3 3.08 0.73 0.02 18.32 18.3 4.567 1.053 1.482 1.911 3.223 AI 50 3 9,10 2 1 194 193 31,574 1.483 3.470 5.205 27,576 2 50 1 11,90 3 1 224 223 32,682 2,965 2,746 5,931 38,014 3 49 4 3.33 2 1 31 30 4,701 1,483 1,413 4,649 25,652 4 49 1 3,33 2 1 18 17 3,579 1,483 1,076 2,749 8,167 As 2 50 7 28,98 10,5 1 240 239 45,366 14,085 1,565 2,900 9,962 As 4 49 10 31,76 9 1 420 419 67,371 11,861	NH4	3	49	6	2,07	0,62	0,02	11,43	11,41	3,014	0,890	1,454	1,772	2,334
Al 50 3 9,10 2 1 194 193 31,574 1,483 3,470 5,205 27,576 2 50 1 11,90 3 1 224 223 32,682 2,965 2,746 5,931 38,014 3 49 4 3,33 2 1 31 30 4,701 1,483 1,413 4,649 25,652 4 49 1 3,33 2 1 18 17 3,579 1,483 1,076 2,749 8,167 As 2 50 7 28,98 10,5 1 240 239 45,366 14,085 1,565 2,900 9,962 3 49 14 13,96 3 1 100 99 21,611 2,965 1,548 2,288 5,353 4 49 10 31,76 9 1 420 419 67,371 11,861 2,122		4	49	3	3,08	0,73	0,02	18,32	18,3	4,567	1,053	1,482	1,911	3,223
Al 2 50 1 11,90 3 1 224 223 32,682 2,965 2,746 5,931 38,014 3 49 4 3,33 2 1 31 30 4,701 1,483 1,413 4,649 25,652 4 49 1 3,33 2 1 18 17 3,579 1,483 1,076 2,749 8,167 As 2 50 6 28,56 8,5 1 196 195 45,694 11,120 1,600 2,611 6,889 As 49 10 31,76 9 1 240 239 45,366 14,085 1,565 2,900 9,962 4 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 Fe 1 50 2 148,822 1249 5 5898 5893 1489,017		1	50	3	9,10	2	1	194	193	31,574	1,483	3,470	5,205	27,576
Al 3 49 4 3.33 2 1 31 30 4.701 1.483 1.413 4.649 25,652 4 49 1 3.33 2 1 18 17 3,579 1.483 1.076 2.749 8,167 As 1 50 6 28,56 8,5 1 196 195 45,694 11,120 1,600 2,611 6,889 As 2 50 7 28,98 10,5 1 240 239 45,366 14,085 1,565 2,900 9,962 As 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 Fe 1 50 2 1488,82 1249 5 5893 1489,017 1436,639 1,000 1,221 1,156 4 49 1 2016,02 1434 5 22077 22072 352		2	50	1	11,90	3	1	224	223	32,682	2,965	2,746	5,931	38,014
4 49 1 3,33 2 1 18 17 3,579 1,483 1,076 2,749 8,167 As 1 50 6 28,56 8,5 1 196 195 45,694 11,120 1,600 2,611 6,889 As 2 50 7 28,98 10,5 1 240 239 45,366 14,085 1,565 2,900 9,962 3 49 14 13,96 3 1 100 99 21,611 2,965 1,548 2,288 5,353 4 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 Fe 1 50 2 1488,82 1249 5 5898 5893 1489,017 1436,639 1,000 1,221 1,156 6 49 3 728,78 79 5 5468 5463 1083	Al	3	49	4	3,33	2	1	31	30	4,701	1,483	1,413	4,649	25,652
As 1 50 6 28,56 8,5 1 196 195 45,694 11,120 1,600 2,611 6,889 As 2 50 7 28,98 10,5 1 240 239 45,366 14,085 1,565 2,900 9,962 3 49 14 13,96 3 1 100 99 21,611 2,965 1,548 2,288 5,353 4 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 4 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 Fe 2 50 3 1661,84 1038,5 5 10347 10342 2113,128 1489,272 1,272 2,037 5,042 4 49 1 2016,02 1434 5 22077 2072		4	49	1	3,33	2	1	18	17	3,579	1,483	1,076	2,749	8,167
As 2 50 7 28,98 10,5 1 240 239 45,366 14,085 1,565 2,900 9,962 As 3 49 14 13,96 3 1 100 99 21,611 2,965 1,548 2,288 5,353 4 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 Fe 1 50 2 1488,82 1249 5 5898 5893 1489,017 1436,639 1,000 1,221 1,156 2 50 3 1661,84 1038,5 5 10347 10342 2113,128 1489,272 1,221 2,110 6,218 4 49 1 2016,02 1434 5 22077 22072 3525,032 2057,849 1,749 4,293 22,549 Mn 50 0 247,32 200 2 1190		1	50	6	28,56	8,5	1	196	195	45,694	11,120	1,600	2,611	6,889
As 3 49 14 13,96 3 1 100 99 21,611 2,965 1,548 2,288 5,353 4 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 Fe 1 50 2 1488,82 1249 5 5898 5893 1489,017 1436,639 1,000 1,221 1,156 2 50 3 1661,84 1038,5 5 10347 10342 2113,128 1489,272 1,272 2,037 5,042 Fe 3 49 3 728,78 79 5 5468 5463 1083,486 109,712 1,487 2,110 6,218 4 49 1 2016,02 1434 5 22077 22072 3525,032 2057,849 1,749 4,293 22,549 Mn 2 50 0 247,32 200 2		2	50	7	28,98	10,5	1	240	239	45,366	14,085	1,565	2,900	9,962
4 49 10 31,76 9 1 420 419 67,371 11,861 2,122 4,423 23,502 Fe 1 50 2 1488,82 1249 5 5898 5893 1489,017 1436,639 1,000 1,221 1,156 2 50 3 1661,84 1038,5 5 10347 10342 2113,128 1489,272 1,272 2,037 5,042 3 49 3 728,78 79 5 5468 5463 1083,486 109,712 1,487 2,110 6,218 4 49 1 2016,02 1434 5 22077 22072 3525,032 2057,849 1,749 4,293 22,549 Mn 50 0 247,32 200 2 1190 1188 223,239 122,315 0,903 2,263 6,829 Mn 2 50 4 233,92 164,5 1 1139 <t< td=""><td>As</td><td>3</td><td>49</td><td>14</td><td>13,96</td><td>3</td><td>1</td><td>100</td><td>99</td><td>21,611</td><td>2,965</td><td>1,548</td><td>2,288</td><td>5,353</td></t<>	As	3	49	14	13,96	3	1	100	99	21,611	2,965	1,548	2,288	5,353
I 50 2 1488,82 1249 5 5898 5893 1489,017 1436,639 1,000 1,221 1,156 2 50 3 1661,84 1038,5 5 10347 10342 2113,128 1489,272 1,272 2,037 5,042 3 49 3 728,78 79 5 5468 5463 1083,486 109,712 1,487 2,110 6,218 4 49 1 2016,02 1434 5 22077 22072 3525,032 2057,849 1,749 4,293 22,549 1 50 0 247,32 200 2 1190 1188 223,239 122,315 0,903 2,263 6,829 Mn 2 50 4 233,92 164,5 1 1139 1138 240,071 148,260 1,026 1,793 3,414 3 49 3 198,49 118 921 920 212,799		4	49	10	31,76	9	1	420	419	67,371	11,861	2,122	4,423	23,502
Fe 2 50 3 1661,84 1038,5 5 10347 10342 2113,128 1489,272 1,272 2,037 5,042 3 49 3 728,78 79 5 5468 5463 1083,486 109,712 1,487 2,110 6,218 4 49 1 2016,02 1434 5 22077 22072 3525,032 2057,849 1,749 4,293 22,549 1 50 0 247,32 200 2 1190 1188 223,239 122,315 0,903 2,263 6,829 Mn 2 50 4 233,92 164,5 1 1139 1138 240,071 148,260 1,026 1,793 3,414 3 49 3 198,49 118 921 920 212,799 146,777 1,072 1,656 2,703 4 49 1 228,08 134 1 1274 1273 <		1	50	2	1488,82	1249	5	5898	5893	1489,017	1436,639	1,000	1,221	1,156
re 3 49 3 728,78 79 5 5468 5463 1083,486 109,712 1,487 2,110 6,218 4 49 1 2016,02 1434 5 22077 22072 3525,032 2057,849 1,749 4,293 22,549 1 50 0 247,32 200 2 1190 1188 223,239 122,315 0,903 2,263 6,829 2 50 4 233,92 164,5 1 1139 1138 240,071 148,260 1,026 1,793 3,414 3 49 3 198,49 118 1 920 212,799 146,777 1,072 1,656 2,703 4 49 1 228,08 134 1 1274 1273 243,809 166,051 1,069 2,218 6,711	F	2	50	3	1661,84	1038,5	5	10347	10342	2113,128	1489,272	1,272	2,037	5,042
4 49 1 2016,02 1434 5 22077 22072 3525,032 2057,849 1,749 4,293 22,549 1 50 0 247,32 200 2 1190 1188 223,239 122,315 0,903 2,263 6,829 2 50 4 233,92 164,5 1 1139 1138 240,071 148,260 1,026 1,793 3,414 3 49 3 198,49 118 1 921 920 212,799 146,777 1,072 1,656 2,703 4 49 1 228,08 134 1 1274 1273 243,809 166,051 1,069 2,218 6,711 <td>Fe</td> <td>3</td> <td>49</td> <td>3</td> <td>728,78</td> <td>79</td> <td>5</td> <td>5468</td> <td>5463</td> <td>1083,486</td> <td>109,712</td> <td>1,487</td> <td>2,110</td> <td>6,218</td>	Fe	3	49	3	728,78	79	5	5468	5463	1083,486	109,712	1,487	2,110	6,218
I 50 0 247,32 200 2 1190 1188 223,239 122,315 0,903 2,263 6,829 Mn 2 50 4 233,92 164,5 1 1139 1138 240,071 148,260 1,026 1,793 3,414 3 49 3 198,49 118 1 921 920 212,799 146,777 1,072 1,656 2,703 4 49 1 228,08 134 1 1274 1273 243,809 166,051 1,069 2,218 6,711		4	49	1	2016,02	1434	5	22077	22072	3525,032	2057,849	1,749	4,293	22,549
Mn 2 50 4 233,92 164,5 1 1139 1138 240,071 148,260 1,026 1,793 3,414 3 49 3 198,49 118 1 921 920 212,799 146,777 1,072 1,656 2,703 4 49 1 228,08 134 1 1274 1273 243,809 166,051 1,069 2,218 6,711		1	50	0	247,32	200	2	1190	1188	223,239	122,315	0,903	2,263	6,829
Mn 3 49 3 198,49 118 1 921 920 212,799 146,777 1,072 1,656 2,703 4 49 1 228,08 134 1 1274 1273 243,809 166,051 1,069 2,218 6,711		2	50	4	233,92	164,5	1	1139	1138	240,071	148,260	1,026	1,793	3,414
4 49 1 228,08 134 1 1274 1273 243,809 166,051 1,069 2,218 6,711	Mn	3	49	3	198,49	118	1	921	920	212,799	146,777	1,072	1,656	2,703
		4	49	1	228,08	134	1	1274	1273	243,809	166,051	1,069	2,218	6,711

5.3.1 Correlazione tra variabili

In Figura 18 sono riportate le ellissi e i coefficienti di correlazione di Spearman tra i parametri misurati nelle quattro campagne.

Ferro, manganese e arsenico mostrano una correlazione positiva tra loro e con ammoniaca e TOC; il pH presenta una correlazione negativa con conducibilità, cloruri, ammoniaca, solfati, TOC, ferro e manganese e positiva con alluminio.

Le concentrazioni di ferro, manganese e arsenico nelle acque sotterranee sono spesso legate, questo perché l'arsenico può essere adsorbito o coprecipitare con il ferro e il manganese ed essere assorbito sulla superficie dell'argilla minerale in condizioni ossidanti. L'arsenico diventa mobile quando le condizioni riducenti sono sufficienti da dissolvere ferro e manganese ma non abbastanza da produrre solfuri [Korte (1991)].

5.3.2 Mappe di distribuzione

Dall'osservazione delle figure (Appendice F) è evidente la forte variabilità spaziale (piezometri vicini spazialmente possano presentare valori di molto diversi tra loro) e temporale dei dati (lo stesso piezometro può presentare valori molto diversi nelle quattro campagne). Ciò è legato alla tipologia di falda in esame che è superficiale, di estensione e spessore limitato, soggetta ad importanti variazioni stagionali e potenzialmente prossima a sorgenti dirette di contaminazione.

5.4 Relazione tra le concentrazione misurate nel suolo e nelle acque

Per verificare la potenzialità di rilascio di alluminio, arsenico, ferro e manganese nelle acque da parte dei suoli sono stati effettuati dei test di cessione in acqua satura di CO₂.

Per il test di cessione sono stati utilizzati i 34 campioni di terreno prelevati dall'orizzonte profondo in corrispondenza delle perforazioni per l'installazione dei nuovi piezometri. I valori misurati per ciascun metallo nel campione di suolo, nell'eluato e nei quattro campioni di acque sotterranee sono riportati in Appendice D, le mappe di distribuzione spaziale in Appendice G.

Alluminio, arsenico e ferro nell'eluato non superano il valore della CSC per le acque sotterranee in nessun campione, il manganese invece ha concentrazioni decisamente superiori in tutti (Tabella 8). Per arsenico e ferro è significativa anche la quota di campioni con concentrazioni inferiori al limite di quantificazione pari al 24% e 47% rispettivamente.

Dall'esame degli scatterplot (Figura 19), che mettono a confronto le concentrazioni misurate nella matrice solida (suolo) con quelle delle matrici acquose (eluato e acque sotterranee), si nota che:

- per il ferro le concentrazioni sono generalmente superiori nelle acque rispetto all'eluato, mentre per il manganese si verifica la situazione contraria;
- alte concentrazioni nel suolo non sono sufficienti a causare alte concentrazioni nelle acque sotterranee. Analogamente basse concentrazioni nei suoli non sono sempre associate a basse concentrazioni nelle acque.

I dati indicano quindi che le concentrazioni nelle acque sotterranee sono influenzate da molti altri fattori oltre alla disponibilità nei suoli e che le condizioni simulate con il test di cessione non sono in grado di riprodurre quelle della falda.

Tabella 8. Statistiche descrittive delle concentrazioni misurate nelle'eluato per AI, As, Fe e Mn Tutte le concentrazioni sono espresse in µg/l. I valori sono stati calcolati ponendo <LOQ pari a LOQ.

parametro	CSC	nobs	ncen	%cen	media	mediana	min	max	range	sd	mad	CV	sk	kur
alluminio	200	34	0	0	5,4	4	2	22	20	3,669	2,965	0,678	2,920	12,182
arsenico	10	34	8	24	4,0	3,5	1	9	8	2,713	3,707	0,683	0,420	-1,179
ferro	200	34	16	47	9,9	5	5	59	54	10,601	0,000	1,076	3,523	14,220
manganese	50	34	0	0	970,7	970	125	2130	2005	548,066	615,279	0,565	0,292	-0,746

Figura 19. Concentrazioni misurate nella fase solida (campioni di suolo) e nella fase acquosa (eluato e acque sotterranee).

5.5 Determinazione dei valori di fondo

Dei sette parametri per i quali è prevista la determinazione dei valori di fondo, *cloruri, solfati e alluminio* sono risultati superiori alle concentrazioni soglia di contaminazione (CSC) o ai valori soglia previsti dal DLgs 30/2009 solo in una frazione trascurabile di campioni (Tabella 9) e pertanto sono stati esclusi dalla procedura di calcolo, in quanto il valore determinato risulterebbe inferiore a tali valori limite.

I cloruri sono risultati superiori al valore soglia di 250 mg/l solo in sei campioni, prelevati in due piezometri distinti: il pz15 a Tessera e il pz23 a Noventa Padovana; se per il pz15 è ipotizzabile che le concentrazioni elevate siano dovute alla vicinanza alla laguna, per il pz23 sembra più probabile un'origine antropica.

I solfati sono risultati superiore alla CSC di 250 mg/l solo in due campioni, prelevati in un unico piezometro, il pz11 a Salzano, anche in questo caso si ritiene più probabile un'origine antropica.

L'alluminio è risultato di poco superiore alla concentrazione soglia di contaminazione di 200 μ g/l in un solo campione, prelevato nel piezometro pz35, e i valori misurati sono normalmente molto inferiori a tale soglia.

Tabella 9. Numero di dati censored e numero di superamenti del valore soglia o della concentrazione soglia di contaminazione (CSC) per i parametri oggetto dello studio.

parametro	udm	CSC dlgs 152/2006	valore soglia dIgs 30/2009	max	n dati	n dati censored	% censored	n superamenti	% superamenti
Cl	mg/l		250	571	198	0	0	6	3
SO4	mg/l	250	250	351	198	5	2.5	2	1
NH4	mg/l		0,5	40.5	198	14	7.1	117	59
Al	µg/l	200		224	198	9	4.5	1	0.5
As	µg/l	10	10	420	198	37	18.7	86	43
Fe	µg/l	200		22072	198	9	4.5	125	63
Mn	µg/l	50		1273	198	8	4	162	82

5.5.1 Dataset per la determinazione dei valori di fondo

Dal dataset iniziale di 198 osservazioni per parametro sono stati esclusi i campioni che contengono indicatori di contaminazione antropica (metodo della pre-selezione). Nello specifico sono stati eliminati i 21 campioni con concentrazione di nitrati superiore a 10 mg/l, i sei con cloruri superiori a 250 mg/l e i due con i solfati superiori a 250 mg/l. Il dataset finale per la determinazione dei valori di fondo è così formato a 169 osservazioni per parametro.

5.5.2 Valutazione dati potenzialmente anomali

Per la valutazione dei dati anomali sono stati utilizzati sia metodi grafici (ecdf-plot e boxplot) che il test non parametrico di Walsh, da utilizzare quando la normalità della distribuzione dei dati non è verificata come nel caso dei parametri in esame (Appendice H). Con un campione di dimensioni intermedie, $60 < n \le 220$, si deve usare un valore alpha di 0.10; per raggiungere un valore di 0.05 servono almeno 220 dati.

In base al test sono risultati outlier statisticamente significativi, con p<0.10, per:

• Arsenico, il valore massimo di 420 µg/l;

- Ferro, i tre valori estremi di 10347, 10799, 22077 μg/l
- Manganese, i due valori estremi di 905, 937 μg/l
- Ammoniaca, li valore di 40.5 mg/l.

Come indicato nel documento ISPRA, i test statistici da soli non permettono di stabilire se comprendere o escludere il dato risultato anomalo dall'insieme dei dati, pertanto le successive analisi sono state condotte sia sull'insieme di dati comprensivo degli outlier che su quello senza.

I valori di fondo devono essere stimati sulla base delle statistiche che rappresentano la popolazione dominante delineata dalla maggioranza dell'insieme di dati. I limiti superiori calcolati includendo elevati valori poco frequenti (che provengono quindi dalla coda della distribuzione) tendono a rappresentare le aree con queste elevate concentrazioni piuttosto che la popolazione prevalente. Il doppio calcolo, con e senza outliers, permette di vedere l'influenza degli outlier sui valori risultanti.

5.5.3 Definizione della distribuzione dei dati

Anche per definire la distribuzione dei dati sono stati usati sia metodi grafici che test statistici, i cui risultati sono riportati nel dettaglio in Appendice H.

Per ciascun parametro e per i due dataset, con e senza outlier, sono stati costruiti i grafici che confrontano la distribuzione empirica con la distribuzione normale, lognormale e gamma e i QQ-plot che evidenziano il grado di accordo della distribuzione del campione con le tre distribuzioni.

La bontà dell'adattamento (goodness of fit test) per le tre distribuzioni è stata testata con più test statistici, per i dettagli si rimanda all'Appendice H.

Dall'applicazione dei test e dall'analisi grafica sui dataset comprensivi degli *outlier* risulta che per ammoniaca, arsenico e ferro, nessuna delle tre distribuzioni testate approssima bene l'insieme dei dati e pertanto si ricorre alla distribuzione non parametrica, per il manganese invece non si rifiuta l'ipotesi di una distribuzione gamma. Per i dataset senza *outlier* anche per il manganese si deve ricorrere alla distribuzione non parametrica.

a)												
sigla	nobs	ncen	mean	median	min	max	range	sd	mad	CV	sk	kur
NH4	169	6	3,29	1,33	0,02	40,5	40,48	5,245	1,809	1,592	3,341	16,365
As	169	24	28,11	10	1	420	419	48,999	13,343	1,743	4,347	26,729
Fe	169	4	1627,33	1093	5	22077	22072	2393,647	1513,735	1,471	4,582	32,780
Mn	169	1	220,57	173	1	937	936	186,994	151,225	0,848	1,506	2,396
b)												
sigla	nobs	ncen	mean	median	min	max	range	sd	mad	CV	sk	kur
NH4	168	6	3,07	1,32	0,02	23,4	23,38	4,397	1,787	1,431	2,187	5,124
As	168	24	25,77	10	1	240	239	38,603	13,343	1,498	2,786	9,475
Fe	166	4	1396,36	1077	5	6238	6233	1508,293	1496,685	1,080	1,265	1,179
Mn	167	1	212,19	173	1	762	761	171,475	149,743	0,808	1,293	1,504

Tabella 10. Statistiche descrittive dei dataset con outliers a) e senza outliers b).

5.5.4 Calcolo dei valori di fondo

Un esame della letteratura ambientale indica che per stimare I valori di fondo può essere usato uno o più dei seguenti limiti statistici superiori (statistical upper limits):

- percentili superiori (upper percentiles);
- limite superiore dell'intervallo di predizione (upper prediction limits, UPLs);
- limite superiore dell'intervallo di tolleranza (upper tolerance limits, UTLs);

Tuttavia non esiste un metodo universalmente riconosciuto per definire il valore di fondo; in Italia generalmente si ricorre ai percentili (i più usati sono il 90° e il 95°).

Come valori rappresentativi pertanto sono stati calcolati il 90° e il 95° percentile (Tabella 11). I valori sono stati arrotondati con lo stesso numero di cifre decimali utilizzate per esprimere i risultati analitici (che per arsenico, ferro e manganese coincidono anche con quelle utilizzate per esprimere le concentrazioni soglia di contaminazione).

a)						
parametro	distribuzione	nobs	P90	P95	metodo stima quantili	stima parametri distribuzione
ammoniaca	nessuna	169	8,88	13,53	non parametrico	-
arsenico	nessuna	169	74	101	non parametrico	-
ferro	nessuna	169	3974	5214	non parametrico	-
manganese	gamma	169	482	613	mle	shape=1,24, scale=177,85
b)						
parametro	distribuzione	nobs	P90	P95	metodo stima quantili	stima parametri distribuzione
ammoniaca	nessuna	168	8,63	12,35	non parametrico	-
arsenico	nessuna	168	72	96	non parametrico	-
ferro	nessuna	166	3480	4525	non parametrico	-
manaanese	nessuna	167	422	600	non parametrico	-

Tabella 11. Calcolo del 90° e 95° percentile sul dataset con gli outilers a) e senza outliers b).

5.5.5 Proposta di valori di fondo

In analogia a quanto viene fatto per la determinazione dei valori di fondo per i suoli, il protocollo ISPRA propone, nel caso di valutazione basata sui percentili, di riferirsi al 95°. D'altra parte nei casi in cui l'impatto antropico non può essere escluso è raccomandato l'uso del 90° percentile [Müller et al. (2006)]. Considerato che un'area come quella in esame, caratterizzata da una notevole estensione areale e da numerose fonte di pressione, non può essere assimilata all'area di un sito contaminato, anche di grandi dimensioni e che la falda in esame è superficiale, di estensione e spessore limitato e potenzialmente prossima a sorgenti dirette di contaminazione, come valori di fondo si propone di utilizzare il 90° percentile calcolato sui dataset comprensivi degli outliers.

Tabella 12. Valori di fondo basati sul 90° percentile dei dataset comprensivi di outliers.

parametro	distribuzione	nobs	P90	metodo stima quantili	stima parametri distribuzione
ammoniaca	nessuna	169	8,88	non parametrico	-
arsenico	nessuna	169	74	non parametrico	-
ferro	nessuna	169	3974	non parametrico	-
manganese	gamma	169	482	mle	shape=1,24, scale=177,85

6 Bibliografia

[ARPA Friuli Venezia Giulia (2007)] ARPA Friuli Venezia Giulia. Sito Inquinato di Interesse Nazionale Laguna di Grado e Marano: valutazione dell'origine antropica o naturale della presenza di Ferro e Manganese nelle acque sotterranee, 2007.

[ARPA Friuli Venezia Giulia (2008)] ARPA Friuli Venezia Giulia. Sito Inquinato di Interesse Nazionale Laguna di Grado e Marano: valutazione dell'origine antropica o naturale della presenza di Ferro e Manganese nelle acque sotterranee, 2008.

[ARPA Friuli Venezia Giulia (2011)] ARPA Friuli Venezia Giulia. Sito Inquinato di Interesse Nazionale Laguna di Grado e Marano: valutazione dell'origine antropica o naturale della presenza di Ferro e Manganese nelle acque sotterranee, 2011.

[ARPA Piemonte (2012)] ARPA Piemonte. Definizione dei valori di fondo naturale per i metalli nelle acque sotterranee come previsto dalla Direttiva 2006/118/CE e dal Decreto Legislativo 16 marzo 2009 n.30, 2012.

[ARPA Sardegna (2009)] ARPA Sardegna. Determinazione dei valori di fondo nelle matrici ambientali dell'area di Portoscuso, 2009.

[ARPA Toscana (2009)] ARPA Toscana. Definizione dei Valori di Fondo per alcuni parametri nelle Acque Sotterranee nei Siti di Interesse Nazionale di Massa Carrara, Livorno e Piombino, 2009.

[ARPA Toscana (2013)] ARPA Toscana. Elaborazione dati disponibili relativi al progetto geobasi su determinazione dei valori di fondo di sostanze pericolose nelle acque sotterranee con particolare riferimento a metalli pesanti e boro ed agli acquiferi destinati all'estrazione di acqua potabile. Technical report, 2013.

[Brian Ripley and Michael Lapsley (2013)] Brian Ripley and Michael Lapsley. *RODBC: ODBC Database Access*, 2013. URL http://CRAN.R-project.org/package=RODBC. R package version 1.3-10.

[Giandon et al. (2011)] Paolo Giandon, Adriano Garlato, and Francesca Ragazzi. Metalli e metalloidi nei suoli del veneto - determinazione dei valori di fondo. Technical report, ARPAV, 2011.

[Gross and bug fixes by Uwe Ligges (2012)] Juergen Gross and bug fixes by Uwe Ligges. nortest: Tests for Normality, 2012. URL http://CRAN.R-project.org/package=nortest. R package version 1.0-2.

[Helsel and Hirsch (2002)] D. R. Helsel and R. M. Hirsch. Statistical methods in water resources. Techniques of water-resources investigations of the United States Geological Survey Chapter A3, U.S. Geological Survey, 2002. URL http://water.usgs.gov/pubs/twri/twri4a3.

[Helsel (2012)] D.R. Helsel. Statistics for Censored Environmental Data Using Minitab and R. CourseSmart Series. Wiley, 2012. ISBN 9780470479889. URL http://books.google.ca/books?id=3qxtATf85pAC.

[Julien MOEYS and Wei Shangguan. (2014)] Julien MOEYS and Wei Shangguan. soiltexture: Functions for soil texture plot, classification and transformation, 2014. URL http://CRAN.R-project.org/package=soiltexture. R package version 1.2.13.

[Korte (1991)] Nic Korte. Naturally occurring arsenic in groundwaters of the midwestern united states. 1991.

[Lopaka (2013)] Lee Lopaka. NADA: Nondetects And Data Analysis for environmental data, 2013. URL http://CRAN.R-project.org/package=NADA. R package version 1.5-6.

[Millard (2013)] Steven P. Millard. EnvStats: An R Package for Environmental Statistics. Springer-Verlag, New York, 2013. ISBN 978-1-4614-8455-4. URL http://www.springer.com.

[Müller et al. (2006)] Dietmar Müller, Ariane Blum, Alwyn Hart, Jan Hookey, Ralf Kunkel, Andreas Scheidleder, Cath Tomlin, and Frank Wendland. Bridge project, deliverable 18: Final proposal for a methodology to set out groundwater threshold values in europe. Technical report, 2006.

[NAVFAC (2004)] NAVFAC. Guidance for Environmental Background Analysis Volume III: Groundwater, 2004.

[Nicholas Hamilton (2014)] Nicholas Hamilton. ggtern: An extension to ggplot2, for the creation of ternary diagrams., 2014. URL http://CRAN.R-project.org/package=ggtern. R package version 1.0.3.2.

[Reimann et al. (2008)] Clemens Reimann, Peter Filzmoser, Robert Garrett, and Rudolf Dutter. Statistical Data Analysis Explained: Applied Environmental Statistics with R. Wiley, 2008. URL http://www.statistik.tuwien.ac.at/StatDA.

[Soliani (2010)] Lamberto Soliani. Statistica applicata alla ricerca e alle professioni scientifiche 2010. UNI.NOVA, Parma, 2010.

[USEPA (1996)] USEPA. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA540/S-95/504, 1996.

[USEPA (2002)] USEPA. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. EPA 540-R-01-003. OSWER 9285.7-41., 2002.

[USEPA (2009)] USEPA. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance, EPA 530-R-09-007, 2009.

[Wei (2013)] Taiyun Wei. corrplot: Visualization of a correlation matrix, 2013. URL http://CRAN.R-project.org/package=corrplot. R package version 0.73.

[Wickham (2009)] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.

Appendice A – Elenco piezometri

Piezometro	Provincia.	Comune	prof [m]	xgbo	ygbo	note
pz34	PD	Arzergrande	10	1739025,52	5018002,11	nuova perforazione
pz09	PD	Borgoricco	14	1731801,50	5046458,80	nuova perforazione
pz30	PD	Brugine	12	1734710,72	5020617,06	nuova perforazione
pz07	PD	Campodarsego	7	1727659,40	5042150,85	esistente
pz05	PD	Camposampiero	15	1728810,80	5050637,33	nuova perforazione
pz47	PD	Codevigo	6	1742806,00	5017522,00	esistente
pz32	PD	Legnaro	9	1731307,02	5025735,12	esistente
pz44	PD	Massanzago	9	1734522,10	5049724,05	esistente
pz23	PD	Noventa Padovana	10	1730920,80	5033905,75	nuova perforazione
pz22	PD	Padova	19	1730445,00	5030234,00	esistente
pz41	PD	Padova	9	1725503,94	5036664,74	esistente
pz31	PD	Piove di Sacco	10	1741321,51	5021508,45	nuova perforazione
pz29	PD	Polverara	15	1732006,67	5021647,61	nuova perforazione
pz33	PD	Pontelongo	10	1737166,46	5015225,04	nuova perforazione
pz43	PD	Santa Giustina in Colle	9	1725243,23	5049897,21	esistente
pz39	PD	Sant'Angelo di Piove di Sacco	9	1735645,07	5025018,01	esistente
pz01	PD	Tombolo	15	1719986,47	5056613,79	nuova perforazione
pz42	PD	Trebaseleghe	8,5	1736385,39	5054825,45	esistente
pz16	PD	Vigonza	9	1730255,17	5039903,24	nuova perforazione
pz19	PD	Vigonza	10	1732005,32	5036136,18	nuova perforazione
pz40	PD	Villanova di Camposampiero	11	1733394,11	5041766,46	esistente
pz12	TV	Castelfranco Veneto	2,7	1726255,00	5057460,00	esistente
pz48	TV	Mogliano Veneto	15	1755158,00	5053556,00	esistente
pz03	TV	Morgano	8	1740185,76	5057994,70	nuova perforazione
pz45	TV	Preganziol	9	1750984,86	5054503,15	esistente
pz02	TV	Resana	15	1730582,59	5057536,05	nuova perforazione
pz04	TV	Zero Branco	15	1744484,29	5055626,57	nuova perforazione
pz26	VE	Campagna Lupia	10	1744732,31	5030907,04	nuova perforazione
pz27	VE	Campolongo Maggiore	10	1739107,26	5024458,17	nuova perforazione
pz28	VE	Campolongo Maggiore	10	1742815,64	5024790,12	nuova perforazione
pz25	VE	Camponogara	6	1740714,25	5030315,70	nuova perforazione
pz38	VE	Fossò	8	1738333,53	5027988,34	nuova perforazione
pz08	VE	Marcon	8	1757619,54	5049893,77	nuova perforazione
pz36	VE	Martellago	8	1746866,83	5045809,03	nuova perforazione
pz21	VE	Mira	10	1746265,58	5036577,33	nuova perforazione
pz17	VE	Mirano	10	1742080,74	5042692,67	nuova perforazione
pz49	VE	Mirano	12	1742348,00	5038261,00	esistente
pz06	VE	Noale	10	1739568,28	5048888,07	nuova perforazione
pz20	VE	Pianiga	10	1736908,97	5038049,45	nuova perforazione
pz11	VE	Salzano	8	1742110,92	5045650,85	nuova perforazione
pz10	VE	Santa Maria di Sala	14	1735397,34	5045206,97	nuova perforazione
pz37	VE	Santa Maria di Sala	14	1737081,59	5040817,76	nuova perforazione
pz35	VE	Scorzè	13	1749236,13	5050554,96	nuova perforazione
pz46	VE	Scorzè	15	1746103,00	5051058,00	esistente
pz50	VE	Spinea	12	1745564,00	5042335,00	esistente
pz24	VE	Stra	9	1735132,33	5032963,69	nuova perforazione
pz13	VE	Venezia	10	1751001,93	5045045,48	nuova perforazione
pz14	VE	Venezia	10	1755138,24	5045482,92	nuova perforazione
pz15	VE	Venezia	10	1759506,35	5046130,74	nuova perforazione
pz18	VE	Venezia	10	1750022,52	5041424,42	nuova perforazione

Appendice B – Dati suoli

Tabella B-1. Determinazioni analitiche sui campioni di suolo: calcare totale, carbonio organico totale, capacità di scambio cationico (C.S.C), pH e tessitura.

id	oriz	profondità prelievo	calcare totale	carbonio organico	C.S.C	рН	argilla	limo fine	limo grosso	limo totale	sabbia totale
		m	%	%	meq/100g		%	%	%	%	%
pz01	1	1.60 - 2.20	45	0.3	7	9.1	4.9	9.3	8	17.3	77.8
pz01	2	2.20 - 2.80	34	0.3	7.7	9.3	2.2	4.9	3.1	8	89.8
pz02	1	2.80 - 3.30	29	0.4	7.8	8.9	5.2	16.2	18.2	34.4	60.4
pz02	2	4.20 - 4.50	27	0.4	7.1	8.3	6.3	27	42.1	69.1	24.6
pz03	1	2.30 - 2.80	29	0.5	8.2	8.4	10.6	35.5	30.3	65.8	23.6
pz03	2	3.50 - 4.00	30	0.5	16.1	8.3	14.4	41	31.7	72.7	12.9
pz04	1	2.80 - 3.30	33	0.6	12.8	8.3	6.9	29.1	35.8	64.9	28.2
pz04	2	4.00 - 4.50	31	0.4	13.9	8.4	6.9	26.6	37.7	64.3	28.8
pz05	1	3.30 - 3.80	14	1	9.9	8.3	10.6	16	14.2	30.2	59.2
pz05	2	4.00 - 4.50	20	3.5	33.1	7.7	19.2	57.1	12.1	69.2	11.6
pz06	1	4.30 - 4.80	41	0.4	10.1	8.5	10	16.3	29.5	45.8	44.2
pz06	2	5.00 - 5.50	44	0.3	11.8	8.7	4.7	10.7	16.3	27	68.3
pz08	1	2.50 - 3.00	51	0.3	12.1	8.9	5.5	15.4	21	36.4	58.1
pz08	2	3.00 - 3.50	50	0.5	6.6	8.6	16.7	40.7	25.7	66.4	16.9
pz09	1	2.50 - 3.00	42	0.4	10.6	8.5	6.6	16.6	12.8	29.4	64
pz09	2	3.00 - 3.50	45	0.3	9.4	8.8	3	6.1	2.9	9	88
pz10	1	2.50 - 3.00	47	0.5	9.6	8.4	6.2	9.6	6.5	16.1	77.7
pz10	2	4.50 - 5.00	51	0.7	6.6	8.4	9.9	23.7	23	46.7	43.4
pz11	1	2.50 - 3.00	47	0.3	10.4	9.1	4.7	12.2	15.8	28	67.3
pz11	2	3.00 - 3.50	51	0.5	10.4	8.6	4.4	9.6	6.6	16.2	79.4
pz13	1	2.50 - 3.00	39	0.4	18.2	8.8	13.9	31.9	12.9	44.5	41.6
pz13	2	4.50 - 5.00	33	0.3	9.5	9.2	3.1	7.4	6.8	14.2	82.7
pz14	1	2.80 - 3.30	38	0.5	16.3	8.7	11.7	23.6	15.3	38.9	49.4
pz14	2	3.50 - 4.00	47	0.4	16.9	8.7	18.3	36.6	22	58.6	23.1
pz15	1	3.80 - 4.30	48	0.3	21.1	8.9	26.5	43.9	20.8	64.7	8.8
pz15	2	4.50 - 5.00	50	0.3	19	8.8	19.2	34.8	27.5	62.3	18.5
pz16	1	1.80 - 2.30	18	1.1	10.1	8.3	10.3	12.5	9.1	21.6	68.1
pz16	2	2.30 - 2.80	41	1.1	14	8.3	17.5	32.2	22	54.2	28.3
pz17	1	1.30 - 1.80	22	0.4	8.1	8.6	7.7	19.2	17	36.2	56.1
pz17	2	3.50 - 4.00	28	0.3	9.1	9.1	2.4	7.6	5.1	12.7	84.9
pz18	1	2.50 - 3.00	32	0.3	13.2	8.9	6.7	13.2	8.4	21.6	71.7
pz18	2	3.00 - 3.50	27	0.3	7.3	8.8	5.3	8.8	4.6	13.4	81.3
pz19	1	3.00 - 3.50	49	0.4	15.3	8.7	8	19.5	20.2	39.7	52.3
pz19	2	4.50 - 5.00	51	0.4	8.1	8.6	5.4	14.7	18.1	32.8	61.8
pz20	1	3.00 - 3.50	51	0.3	6.6	9.2	4.1	8.3	4.1	12.4	83.5
pz20	2	7.50 - 8.00	40	1.2	16.6	8.3	41.7	51.7	3.7	55.4	2.9
pz21	1	2.90 - 3.40	37	0.5	7.7	8.8	13.4	36.6	20.6	57.2	29.4
pz21	2	3.50 - 4.00	39	0.7	9	8.7	14.9	48.4	18.2	66.6	18.5
pz23	1	2.50 - 3.00	30	0.6	8.3	8.9	8.8	31.4	27.8	59.2	32
pz23	2	4.80 - 5.30	24	1.9	18.3	8.2	19.2	36.2	12.7	48.9	31.9
pz24	1	2.90 - 3.40	36	0.3	<3.0	8.9	5.6	16.7	22.2	38.9	55.6

id	oriz	profondità prelievo	calcare totale	carbonio organico	C.S.C	рН	argilla	limo fine	limo grosso	limo totale	sabbia totale
		m	%	%	meq/100g		%	%	%	%	%
pz24	2	3.50 - 4.00	34	0.3	3.6	8.9	5	15.4	19.3	34.6	60.4
pz25	1	2.50 - 3.00	33	0.5	13.6	8.8	6.2	25.8	19.7	45.4	48.4
pz25	2	3.00 - 3.50	21	0.3	11.3	8.7	7.5	29.7	28.4	58.1	34.4
pz26	1	3.00 - 3.50	35	0.4	14	8.5	16.1	21.4	17.9	39.3	44.6
pz26	2	5.00 - 5.50	53	0.4	17.9	8.7	10.5	27.1	19.5	46.6	42.9
pz27	1	2.30 - 2.80	35	0.5	12	8.7	14.6	28.8	15.8	44.5	40.9
pz27	2	4.00 - 4.50	34	0.5	24.9	8.6	29.3	60.3	5.4	65.7	5
pz28	1	2.30 - 2.80	26	0.7	8.5	8.4	12.5	21.1	10.4	31.5	56
pz28	2	4.80 - 5.30	32	0.8	10.6	8.3	24.7	47.9	18.5	66.4	8.9
pz29	1	2.20 - 2.70	38	0.6	11.9	8.6	15.1	51.9	22.9	74.8	10.1
pz29	2	3.90 - 4.40	32	0.8	22.9	8.5	29.5	49.8	11.5	61.2	9.2
pz30	1	2.00 - 2.50	34	0.3	12	9	5.6	17	16.8	33.8	60.6
pz30	2	3.00 - 3.50	35	0.3	9.2	9	2.8	11.1	10.9	21.9	75.3
pz31	1	1.50 - 2.00	27	0.5	9.1	8.7	6.1	23.7	31	54.7	39.2
pz31	2	3.30 - 3.80	34	0.6	8.3	8.4	13.1	41.3	22.7	63.9	23
pz33	1	2.20 - 2.70	36	0.7	10.2	8.7	6.9	29.8	34.4	64.2	28.9
pz33	2	4.50 - 5.00	26	1.6	12.1	8	11.9	53.4	28.4	81.8	6.2
pz34	1	2.40 - 2.90	33	0.5	8.6	8.6	10.5	28	20.7	48.7	40.8
pz34	2	4.70 - 5.20	15	3.7	59	7.4	12.3	39.1	22.1	61.2	26.5
pz35	1	1.80 - 2.30	24	0.5	6.3	8.9	3.1	11.7	10	21.7	75.2
pz35	2	3.70 - 4.20	41	0.9	7.6	8.3	18.3	49.6	23.8	73.4	8.3
pz36	1	1.60 - 2.10	50	0.4	14.1	8.9	6.6	16.8	16.9	33.7	59.8
pz36	2	3.40 - 3.90	51	0.6	12.5	8.5	14	31.3	17	48.4	37.6
pz37	1	2.20 - 2.60	28	0.7	9.2	8.4	17.1	29.7	10.3	40	42.9
pz37	2	2.60 - 3.00	35	0.6	8.3	8.3	10	32.4	31.4	63.8	26.2
pz38	1	2.40 - 2.90	39	0.5	14.1	8.5	15.2	23.2	25.6	48.7	36.1
pz38	2	4.50 - 5.00	51	0.3	14.9	8.9	2.4	11	12.9	23.9	73.7

Tabella B-2. Analisi suolo: metalli.

id	oriz	Al	As	Be	Cd	Со	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	Se	Sn	V	Zn
		g/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	g/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
pz01	1	6.4	7.5	<0.50	<0.50	2.8	7.5	10.4	8.2	<0.05	244	6.5	7.5	0.27	<0.20	0.94	15.4	33
pz01	2	8.4	12.5	<0.50	<0.50	4.2	12	14.6	12.1	<0.05	293	8.7	9.4	0.41	<0.20	1.21	18.8	40
pz02	1	13.9	9.1	<0.50	<0.50	7	13.3	17.7	19.2	<0.05	316	12.6	12.7	0.56	<0.20	1.36	22	65
pz02	2	14.6	11.5	<0.50	<0.50	7.5	14.2	21.3	22	<0.05	376	14.2	13.8	0.68	0.24	2.11	23	77
pz03	1	14.4	7.2	<0.50	<0.50	8	14.3	19.4	21	<0.05	374	14.8	11.9	0.54	0.24	1.44	16.1	71.8
pz03	2	18.7	19.6	0.61	<0.50	8.4	17.9	21	25	<0.05	447	16.4	14.2	0.44	<0.20	1.61	31	82
pz04	1	11.1	8.3	<0.50	<0.50	6.6	11.3	17.2	19	<0.05	375	13	10.3	0.73	<0.20	0.97	12.5	63.7
pz04	2	10.6	6.6	<0.50	<0.50	6.8	11	17.3	19.4	<0.05	390	13.9	8.7	0.45	<0.20	0.76	10.9	62
pz05	1	18.1	10.5	0.66	<0.50	7.8	21	19.5	23	0.11	330	15.3	15.7	0.42	0.3	2.18	21	72
pz05	2	40	19.9	1.32	<0.50	10.5	37	41	31	0.38	469	22	21	0.71	0.64	5.66	42	146
pz06	1	11.4	6.5	<0.50	<0.50	4.9	11.7	13.7	13.5	<0.05	263	10.7	7.2	0.32	0.25	1.02	15.3	47
pz06	2	8.4	5.8	<0.50	<0.50	3.8	6.7	11	10.5	<0.05	228	7.4	6.1	0.21	<0.20	0.92	14.3	35
pz08	1	8.7	3	<0.50	<0.50	3.9	7.5	10.6	10.5	<0.05	244	8.9	5.3	0.33	0.39	0.78	14.9	38
pz08	2	15	8.3	<0.50	<0.50	6	15.8	15.2	15.8	<0.05	355	15.6	7.5	0.44	<0.20	0.93	24	45
pz09	1	12.1	12	<0.50	<0.50	5.1	12	11.4	14.8	<0.05	245	11.4	7.8	0.35	0.24	0.98	19.4	48
pz09	2	6.1	5.7	<0.50	<0.50	2.3	<5.0	7	6	<0.05	169	5.8	<5.0	<0.20	<0.20	0.63	12.5	25
pz10	1	9.3	16.5	<0.50	<0.50	3.8	8.6	8.2	10.1	<0.05	209	8.6	<5.0	0.35	0.26	0.94	17	35
pz10	2	13.3	6.1	<0.50	<0.50	5.8	15.1	14.2	14	<0.05	315	15.1	6.2	0.33	<0.20	0.94	23	43
pz11	1	6.7	1.61	<0.50	<0.50	3.2	5.9	8.7	7.5	<0.05	173	7.3	<5.0	0.29	<0.20	0.61	12.7	32
pz11	2	6.1	4.9	<0.50	<0.50	3	5.9	8.5	7.7	<0.05	200	7.9	<5.0	0.37	0.46	0.51	13	31
pz13	1	11.2	3.6	<0.50	<0.50	5.7	11.6	14.7	16.4	<0.05	339	12.9	9.2	0.44	<0.20	0.88	17.8	55
pz13	2	6.9	3.6	<0.50	<0.50	3.4	6.6	11.1	11.1	<0.05	210	7.7	6.3	0.33	<0.20	0.67	12.6	39
pz14	1	10.9	11.3	<0.50	<0.50	5.5	13.3	15.5	16.8	<0.05	332	12.7	9	0.36	<0.20	3.2	17.5	53
pz14	2	12.8	6.9	<0.50	<0.50	6.2	15.1	16.1	16.9	<0.05	363	16.7	8.4	0.39	<0.20	0.83	21	55
pz15	1	19.5	7	0.53	<0.50	6.8	19	16.3	18.7	<0.05	365	17.3	8.8	0.45	<0.20	1.71	27	55
pz15	2	19	5.7	<0.50	<0.50	5.6	17.1	13.4	15.3	<0.05	318	14.3	6.6	0.28	<0.20	1.35	26	46
pz16	1	22	10	0.64	<0.50	7.7	21	15.6	17.8	<0.05	226	15.1	13	0.32	0.46	1.71	28	74
pz16	2	13.4	8.4	<0.50	<0.50	5.6	13.8	14.9	14.5	<0.05	316	14.4	7.3	0.34	<0.20	0.94	21	49
pz17	1	22	18	0.58	<0.50	7.4	18.1	23	21	<0.05	393	12.9	15.9	0.63	<0.20	1.95	28	69
pz17	2	11	4.6	<0.50	<0.50	4.6	9.4	12	12.9	<0.05	228	8.7	8.4	0.37	<0.20	1.07	16.4	50
pz18	1	20	12.5	0.54	<0.50	6.5	18.3	18.1	17.6	<0.05	387	12.9	12.5	0.46	<0.20	1.87	26	53
pz18	2	19.1	14	0.55	<0.50	6.3	21	16.6	19.1	<0.05	486	14.6	14.2	0.5	<0.20	1.77	27	56
pz19	1	10.8	1.97	<0.50	<0.50	4.8	10.6	13.1	11.6	<0.05	254	11.4	5.8	0.41	<0.20	0.88	21	37
pz19	2	7.8	12.2	<0.50	<0.50	3.9	7.4	10.5	10.4	<0.05	243	9.1	<5.0	0.25	<0.20	0.8	17.5	34
pz20	1	7.4	2.9	<0.50	<0.50	3.9	6.7	6.7	9.4	<0.05	205	7.6	<5.0	0.34	0.45	0.95	16.6	32
pz20	2	36	18.1	1.12	<0.50	10.5	37	27	28	<0.05	491	29	19.6	0.71	0.22	2.5	52	88
pz21	1	16.7	12.1	<0.50	<0.50	6.8	15.7	15.6	20	<0.05	357	14.3	10.3	0.29	<0.20	1.5	27	56
pz21	2	21	8.5	0.64	<0.50	7.8	20	19.9	22	<0.05	412	17.3	13.7	0.3	<0.20	1.86	32	66
pz23	1	20	14.7	0.59	<0.50	7.9	17.4	20.1	24	<0.05	436	15.6	11.2	0.45	<0.20	1.78	28	64
pz23	2	15.5	9.6	0.54	< 0.50	6.4	15.6	15.3	18.6	<0.05	284	13.9	10.7	0.4	0.29	1.41	25	62
pz24	1	9.1	5.6	< 0.50	< 0.50	5.3	7.7	11.1	13.9	< 0.05	274	10.5	6	0.34	<0.20	0.89	19	40
pz24	2	10.5	6.6	<0.50	< 0.50	5.6	9.5	12.4	14.8	<0.05	334	10.3	6.6	0.26	<0.20	1.41	20	44
pz25	1	15.3	22	< 0.50	< 0.50	6.2	15	21	24	<0.05	364	12.8	12.6	0.71	0.23	1.35	25	63
pz25	2	15	22	< 0.50	< 0.50	7.5	16	23	25	< 0.05	452	14.8	14.8	0.6	< 0.20	1.18	26	/2
pz26	1	20	10.1	0.51	<0.50	7.6	21	15.4	21	<0.05	392	15.1	7.8	0.59	<0.20	1.39	40	48

-																		
id	oriz	Al	As	Ве	Cd	Со	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	Se	Sn	V	Zn
		g/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	g/Kg	mg/Kg								
pz26	2	14.3	2.1	<0.50	<0.50	5.7	14.3	11.2	14.4	<0.05	320	10.8	<5.0	0.41	<0.20	0.92	30	39
pz27	1	19.1	21	0.68	<0.50	8.4	23	19.1	25	<0.05	503	18.1	10.1	0.47	<0.20	1.43	26	63
pz27	2	29	33	0.95	<0.50	11.8	22	30	34	<0.05	639	27	19.2	0.62	<0.20	2	42	86
pz28	1	24	10.7	0.82	<0.50	9.2	29	19.9	23	<0.05	372	19.2	12.6	0.39	0.29	2.06	30	70
pz28	2	25	10.7	0.85	<0.50	9.5	26	25	26	<0.05	493	22	16.8	0.7	0.64	2.03	31	80
pz29	1	19	12.9	0.72	<0.50	8.6	19.8	31	25	<0.05	549	18.8	14.2	0.41	<0.20	1.74	22	75
pz29	2	35	22	1.13	<0.50	11	35	28	31	<0.05	459	25	16.4	0.54	0.25	2.67	42	86
pz30	1	11.4	4.5	<0.50	<0.50	5.8	13.4	12.8	17.1	<0.05	283	11.8	6.6	0.24	<0.20	2.78	14	46
pz30	2	12	3.9	<0.50	<0.50	5.7	12.7	10.5	15.3	<0.05	271	11	6.2	<0.20	<0.20	1.57	19.4	41
pz31	1	17.8	13.1	<0.50	<0.50	7.8	18.3	18.5	22	<0.05	400	15.5	9.9	<0.20	<0.20	1.74	26	55
pz31	2	21	7.3	0.57	<0.50	8.7	23	17.4	26	<0.05	493	18.8	9.5	0.36	<0.20	1.71	33	57
pz33	1	15.7	22	<0.50	<0.50	7.4	17.2	15.9	24	<0.05	461	16	8.4	0.37	<0.20	1.37	25	51
pz33	2	23	15.7	<0.50	<0.50	11.4	31	27	31	<0.05	507	25	13.8	0.56	0.26	1.73	41	84
pz34	1	15.1	10.5	<0.50	<0.50	7.4	17.5	21	22	<0.05	398	16.4	12.6	0.29	<0.20	1.32	25	58
pz34	2	43	47	1.18	0.7	13.3	49	37	37	0.06	832	33	22	0.84	1.49	3.15	69	94
pz35	1	10.8	27	<0.50	<0.50	5.3	11.8	19.4	18.1	<0.05	317	10	11.2	0.61	<0.20	1.28	17.5	57
pz35	2	14.5	13.9	<0.50	<0.50	7.1	17.8	17.3	18.9	<0.05	423	17.6	9.7	0.35	<0.20	1.11	23	69
pz36	1	9.8	4.6	<0.50	<0.50	4.6	11.5	12.3	11.5	<0.05	247	11.3	6.4	0.24	<0.20	1.18	17.3	50
pz36	2	12.1	5.8	<0.50	<0.50	5.9	15.9	15.9	15.6	<0.05	359	16	8.3	0.48	<0.20	1.04	21	59
pz37	1	11.4	7.2	<0.50	<0.50	4.8	11.6	15.9	13.1	<0.05	222	11.2	9.6	0.31	0.34	1.13	18.5	52
pz37	2	10.8	18.9	<0.50	<0.50	6.1	11.5	16.9	18.6	<0.05	335	13.4	9.3	0.37	0.49	0.89	17.4	60
pz38	1	14.1	11.3	<0.50	<0.50	5.7	16	13.7	17.1	<0.05	415	13.6	7.1	0.38	<0.20	1.06	25	47
pz38	2	8.1	7.1	<0.50	<0.50	4.3	9.7	8.9	11.6	<0.05	269	8.3	<5.0	0.34	<0.20	0.68	19.3	32

Tabella B-3. La combinazione quantitativa specifica di sabbia, limo e argilla espressa nelle classi tessiturali USDA per i campioni prelevati dall'orizzonte superficiale e profondo. Legenda: Sa (sand): sabbiosa, LoSa (loamy sand): sabbioso franco, SaLo (sandy loam): franco sabbiosa, Lo (loam): franca, SiLo (silty loam): franco limosa, Si (silt): limosa, SiCILo (silty clay loam): franco limoso argillosa, SiCI (silty clay): argilloso limosa.

niazamatra		orizzonte supe	rficiale			orizzonte pro	ofondo	
piezometro	sabbia%	argilla%	limo%	sigla	sabbia%	argilla%	limo%	sigla
pz01	77,8	4,9	17,3	LoSa	89,8	2,2	8,0	Sa
pz02	60,4	5,2	34,4	SaLo	24,6	6,3	69,1	SiLo
pz03	23,6	10,6	65,8	SiLo	12,9	14,4	72,7	SiLo
pz04	28,2	6,9	64,9	SiLo	28,8	6,9	64,3	SiLo
pz05	59,2	10,6	30,2	SaLo	11,6	19,2	69,2	SiLo
pz06	44,2	10,0	45,8	Lo	68,3	4,7	27,0	SaLo
pz08	58,1	5,5	36,4	SaLo	16,9	16,7	66,4	SiLo
pz09	64,0	6,6	29,4	SaLo	88,0	3,0	9,0	Sa
pz10	77,7	6,2	16,1	LoSa	43,4	9,9	46,7	Lo
pz11	67,3	4,7	28,0	SaLo	79,4	4,4	16,2	LoSa
pz13	41,6	13,9	44,5	Lo	82,7	3,1	14,2	LoSa
pz14	49,4	11,7	38,9	Lo	23,1	18,3	58,6	SiLo
pz15	8,8	26,5	64,7	SiLo	18,5	19,2	62,3	SiLo
pz16	68,1	10,3	21,6	SaLo	28,3	17,5	54,2	SiLo
pz17	56,1	7,7	36,2	SaLo	84,9	2,4	12,7	LoSa
pz18	71,7	6,7	21,6	SaLo	81,3	5,3	13,4	LoSa
pz19	52,3	8,0	39,7	Lo	61,8	5,4	32,8	SaLo
pz20	83,5	4,1	12,4	LoSa	2,9	41,7	55,4	SiCl
pz21	29,4	13,4	57,2	SiLo	18,5	14,9	66,6	SiLo
pz23	32,0	8,8	59,2	SiLo	31,9	19,2	48,9	Lo
pz24	55,6	5,6	38,9	SaLo	60,4	5,0	34,6	SaLo
pz25	48,4	6,2	45,4	SaLo	34,4	7,5	58,1	SiLo
pz26	44,6	16,1	39,3	Lo	42,9	10,5	46,6	Lo
pz27	40,9	14,6	44,5	Lo	5,0	29,3	65,7	SiCILo
pz28	56,0	12,5	31,5	SaLo	8,9	24,7	66,4	SiLo
pz29	10,1	15,1	74,8	SiLo	9,2	29,5	61,2	SiCILo
pz30	60,6	5,6	33,8	SaLo	75,3	2,8	21,9	LoSa
pz31	39,2	6,1	54,7	SiLo	23,0	13,1	63,9	SiLo
pz33	28,9	6,9	64,2	SiLo	6,2	11,9	81,8	Si
pz34	40,8	10,5	48,7	Lo	26,5	12,3	61,2	SiLo
pz35	75,2	3,1	21,7	LoSa	8,3	18,3	73,4	SiLo
pz36	59,8	6,6	33,7	SaLo	37,6	14,0	48,4	Lo
pz37	42,9	17,1	40,0	Lo	26,2	10,0	63,8	SiLo
pz38	36,1	15,2	48,7	Lo	73,7	2,4	23,9	LoSa

Tabella B-4. Risultati test di cessione.

idalina	noriz	Al	As	Fe	Mn
		µg/l	µg/l	µg/l	µg/l
pz01	1	6.4	7.5	8.2	244
pz02	2	14.6	11.5	22	376
pz03	2	18.7	19.6	25	447
pz04	2	10.6	6.6	19.4	390
pz05	2	40	19.9	31	469
pz06	2	8.4	5.8	10.5	228
pz08	2	15	8.3	15.8	355
pz09	2	6.1	5.7	6	169
pz10	2	13.3	6.1	14	315
pz11	2	6.1	4.9	7.7	200
pz13	2	6.9	3.6	11.1	210
pz14	2	12.8	6.9	16.9	363
pz15	2	19	5.7	15.3	318
pz16	2	13.4	8.4	14.5	316
pz17	2	11	4.6	12.9	228
pz18	2	19.1	14	19.1	486
pz19	2	7.8	12.2	10.4	243
pz20	2	36	18.1	28	491
pz21	2	21	8.5	22	412
pz23	2	15.5	9.6	18.6	284
pz24	2	10.5	6.6	14.8	334
pz25	2	15	22	25	452
pz26	2	14.3	2.1	14.4	320
pz27	2	29	33	34	639
pz28	2	25	10.7	26	493
pz29	2	35	22	31	459
pz30	2	12	3.9	15.3	271
pz31	2	21	7.3	26	493
pz33	2	23	15.7	31	507
pz34	2	43	47	37	832
pz35	2	14.5	13.9	18.9	423
pz36	2	12.1	5.8	15.6	359
pz37	2	10.8	18.9	18.6	335
pz38	2	8.1	7.1	11.6	269

Appendice C– Dati acque

Tabella C-1. Parametri determinati in campo sui campioni di acque sotterranee.

id	n	data	Т	рН	CE	DO	ORP
			gradi C.	рН	µ\$/cm	mg/l	mV
pz01	1	01/07/2013	15.3	7.15	530	6.8	-
pz01	2	01/10/2013	16.5	-	530	7.3	-
pz01	3	21/01/2014	13.7	-	-	-	-
pz01	4	05/05/2014	14.5	7.40	540	7.9	-22
pz02	1	01/07/2013	15.7	7.20	640	6.0	-
pz02	2	01/10/2013	15.4		610	4.8	-
pz02	3	21/01/2014	12.6	-	-	-	-
pz02	4	30/04/2014	14.6	7.45	591	6.2	-48
pz03	1	03/07/2013	-	-	-	-	-
pz03	2	02/10/2013	20.9	-	610	2.1	-
pz03	3	23/01/2014	11.8	-	-	-	-
pz03	4	30/04/2014	14.5	7.40	725	3.8	-45
pz04	1	03/07/2013	-	-	-	-	-
pz04	2	02/10/2013	17.7	-	480	4.8	-
pz04	3	23/01/2014	12.6	-	-	9.5	-
pz04	4	30/04/2014	15.1	-	485	4.8	-
pz05	1	01/07/2013	17.1	6.90	920	1.5	-
pz05	2	01/10/2013	18.3	-	885	2.4	-
pz05	3	21/01/2014	15.5	-	-	-	-
pz05	4	05/05/2014	15.3	7.28	730	2.0	-26
pz06	1	01/07/2013	17.1	6.56	805	2.6	-
pz06	2	01/10/2013	19.2	-	730	1.9	-
pz06	3	21/01/2014	14.7	-	-	-	-
pz06	4	05/05/2014	14.9	7.10	730	2.7	-6
pz07	1	01/07/2013	14.4	7.30	738	0.1	-157
pz07	2	24/09/2013	-	-	-	-	-
pz07	3	23/01/2014	11.9	7.78	607	2.5	25.6
pz07	4	05/05/2014	14.7	7.20	850		-11
pz08	1	03/07/2013	-	-	-	-	-
pz08	2	02/10/2013	17.5	-	695	2.3	-
pz08	3	23/01/2014	12.9	-	-	8.9	-
pz08	4	30/04/2014	14.0	-	610	1.7	-
pz09	1	03/07/2013	18.3	7.30	844	0.4	-151
pz09	2	24/09/2013	-	-	-	-	-
pz09	3	23/01/2014	14.0	7.72	567	1.3	9.8
pz09	4	05/05/2014	15.7	7.15	600	1.2	-10
pz10	1	03/07/2013	18.3	7.40	753	0.6	-160
pz10	2	24/09/2013	-	-	-	-	-
pz10	3	23/01/2014	15.1	7.73	574	1.0	-63.1
pz10	4	05/05/2014	16.8	7.20	598	1.9	-12
pz11	1	27/06/2013	15.6	7.18	1373	0.3	-76
pzll	2	23/09/2013	-	-	-	-	-

id	n	data	Т	На	CE	DO	ORP
			gradi C.	рН	µ\$/cm	mg/l	mV
pz11	3	23/01/2014	12.7	7.84	1029	1.3	33.3
pz11	4	30/04/2014	13.5	-	930	2.5	-
pz12	1	04/07/2013	16.5	7.40	848	1.0	-70
pz12	2	01/10/2013	18.7	-	490	7.5	-
pz12	3	06/02/2014	11.0	-	550	-	-
pz12	4	05/05/2014	14.8	7.15	604	2.2	-10
pz13	1	27/06/2013	14.3	7.20	894	0.3	-34
pz13	3	22/01/2014	12.7	7.45	632	-	-
pz13	4	29/04/2014	14.2	-	824	-	-
pz14	1	01/07/2013	16.4	7.30	842	0.3	44
pz14	3	22/01/2014	11.8	7.39	1185	-	-
pz14	4	06/05/2014	14.0	7.15	919	3.2	-28
pz15	1	03/07/2013	15.5	7.00	246	1.4	-95
pz15	3	22/01/2014	11.7	7.39	1411	-	-
pz15	4	29/04/2014	15.0	-	1450	-	-
pz16	1	01/07/2013	18.2	7.50	611	0.3	-53
pz16	3	23/01/2014	14.3	7.88	512	1.4	-34.5
pz16	4	06/05/2014	15.4	7.40	540	2.1	-22
pz17	1	27/06/2013	16.7	7.30	888	-	-105
pz17	3	22/01/2014	13.8	7.76	632	17.8	-
pz17	4	29/04/2014	15.6	-	641	-	-
pz18	1	27/06/2013	16.0	7.18	1002	0.6	-105
pz18	3	22/01/2014	14.5	7.50	807	14.1	-
pz18	4	06/05/2014	14.8	7.00	895	2.0	-
pz19	1	01/07/2013	18.5	7.20	860	0.4	-76
pz19	3	23/01/2014	14.1	7.56	709	1.3	-43.5
pz19	4	06/05/2014	16.1	6.98	740	2.3	-1
pz20	1	01/07/2013	16.4	7.20	953	0.2	-110
pz20	3	27/01/2014	16.1	7.53	823	1.1	-66.5
pz20	4	06/05/2014	16.9	7.05	853	1.5	-5
pz21	1	01/07/2013	17.4	7.20	874	0.7	-82
pz21	3	27/01/2014	13.6	7.60	843	1.8	-26.6
pz21	4	29/04/2014	16.4	-	937	-	-
pz22	1	04/07/2013	18.8	7.50	216	2.2	-77
pz22	3	29/01/2014	12.0	7.20	975	6.7	-92
pz22	4	06/05/2014	16.5	7.20	820	2.7	-12
pz23	1	03/07/2013	15.4	7.00	287	0.3	-71
pz23	3	27/01/2014	13.5	7.45	192	1.8	-9.5
pz23	4	06/05/2014	14.9	6.95	2220	1.5	1
pz24	1	01/07/2013	17.6	7.60	765	0.9	158
pz24	3	2//01/2014	17.0	/.56	938	1.2	23.9
pz24	4	29/04/2014	17.5	-	1026	-	-
pz25	I C	03/07/2013	17.3	/.36	917	0.8	-/2
pz25	2	25/09/2013	18.0	6.61	1135	1.5	107
pz25	3	2//01/2014	11.5	7.86	442	4.6	38.3
pz25	4	06/05/2014	14.2	7.06	/40	2./	-9

id	n	data	Т	На	CE	DO	ORP
			gradi C.	рН	µ\$/cm	mg/l	mV
pz26	1	03/07/2013	18.4	7.11	1427	1.5	-10
pz26	3	27/01/2014	14.3	7.66	694	2.4	31.9
pz26	4	28/04/2014	15.1	-	1182	-	-
pz27	1	02/07/2013	18.1	7.40	432	-	32
pz27	2	27/09/2013	22.8	6.78	412	1.6	-44
pz27	3	29/01/2014	13.1	7.70	766	6.7	80.2
pz27	4	28/04/2014	16.3	-	190	-	-
pz28	1	28/06/2013	16.4	7.20	1302	2.0	-106
pz28	2	27/09/2013	20.2	6.45	1351	1.1	-48
pz28	3	29/01/2014	13.4	7.50	1013	1.7	-76.3
pz28	4	28/04/2014	15.0	-	1190	-	-
pz29	1	02/07/2013	15.2	7.15	1151	0.9	-103
pz29	3	30/01/2014	11.5	7.69	691	2.3	38.0
pz29	4	28/04/2014	13.3	-	750	-	-
pz30	1	02/07/2013	16.2	7.60	928	-	94
pz30	3	30/01/2014	12.6	7.81	628	3.7	47.2
pz30	4	28/04/2014	13.6	-	590	-	-
pz31	1	02/07/2013	14.5	7.10	1128	0.2	-76
pz31	2	26/09/2013	-	-	-	-	-
pz31	3	30/01/2014	11.6	7.73	745	4.1	45.6
pz31	4	28/04/2014	14.3	-	870	-	-
pz32	1	02/07/2013	15.4	7.30	805	1.7	-35
pz32	3	06/02/2014	11.6	7.59	-	2.2	43.8
pz32	4	28/04/2014	13.2	-	758	-	-
pz33	1	28/06/2013	15.1	7.10	151	1.5	-7
pz33	3	30/01/2014	13.6	7.36	1410	1.4	3.8
pz33	4	28/04/2014	14.8	-	1430	-	-
pz34	1	28/06/2013	16.2	7.80	398	2.2	-49
pz34	3	30/01/2014	14.0	7.73	500	1.2	-0.7
pz34	4	28/04/2014	14.8	-	520	-	-
pz35	2	01/10/2013	17.4	-	794	2.1	-
pz35	3	23/01/2014	12.9	-	-	9.8	-
pz35	4	30/04/2014	14.4	-	735	1.7	-
pz36	1	27/06/2013	15.4	7.29	842	0.2	-100
pz36	3	22/01/2014	12.5	7.57	-	-	-
pz36	4	29/04/2014	14.4	-	691	-	-
pz37	1	27/06/2013	15.0	7.18	918	0.2	-114
pz37	3	23/01/2014	14.0	7.66	734	1.1	27
pz37	4	06/05/2014	14.8	7.80	777	1.8	-6
pz38	1	02/07/2013	16.5	7.10	988	0.4	3
pz38	2	27/09/2013	19.7	6.50	892	1.1	99
pz38	3	27/01/2014	12.9	7.53	987	1.6	34.7
pz38	4	06/05/2014	15.1	7.01	955	1.5	-2
pz39	1	02/07/2013	16.0	7.10	1217	0.5	-198
pz39	2	27/09/2013	18.5	6.70	1182	1.5	-98
pz39	3	29/01/2014	12.6	7.30	838	7.2	97.3

id	n	data	Т	рН	CE	DO	ORP
			gradi C.	рН	µ\$/cm	mg/l	mV
pz39	4	28/04/2014	14.0	-	1105	-	-
pz40	1	03/07/2013	16.1	7.20	1070	0.5	-38
pz40	3	23/01/2014	12.3	7.63	737	1.5	24.4
pz40	4	05/05/2014	14.5	7.07	868	2.0	-5
pz41	1	03/07/2013	18.2	7.40	751	2.3	41
pz41	3	27/01/2014	12.2	7.65	617	5.6	40.6
pz41	4	06/05/2014	15.0	7.20	758	5.1	-11
pz42	2	01/10/2013	19.0	-	495	2.8	
pz42	4	05/05/2014	14.5	7.00	915	1.5	-2
pz43	1	01/07/2013	15.3	6.90	938	3.3	-
pz43	2	01/10/2013	19.9	-	760	5.1	-
pz43	3	21/01/2014	11.5	-	-	-	-
pz43	4	05/05/2014	14.1	6.95	860	1.9	-8
pz44	1	01/07/2013	16.4	7.30	410	1.0	-
pz44	2	01/10/2013	20.5	-	512	2.4	-
pz44	3	21/01/2014	14.5	-	-	-	-
pz44	4	05/05/2014	15.5	7.45	410	2.2	-25
pz45	2	02/10/2013	18.1	-	458	3.0	-
pz45	3	23/01/2014	11.8	-	-	9.8	-
pz45	4	30/04/2014	14.0	-	620	3.5	-
pz46	2	01/10/2013	18.3	-	637	2.3	-
pz46	3	23/01/2014	12.0	-	-	9.6	-
pz46	4	05/05/2014	14.5	7.05	1005	1.8	-4
pz47	1	28/06/2013	17.7	7.23	1017	0.5	-93
pz47	3	30/01/2014	13.4	7.60	858	1.8	-30.1
pz47	4	28/04/2014	14.5	-	1025		-
pz48	2	02/10/2013	-	-	1035	2.0	-
pz48	3	23/01/2014	12.1	-	-	11.1	-
pz48	4	30/04/2014	13.0	-	1093	2.0	-
pz49	1	27/06/2013	13.9	7.13	1229	2.0	-12
pz49	3	22/01/2014	13.0	7.40	836	15.0	-
pz49	4	29/04/2014	14.4	-	903	-	-
pz50	1	27/06/2013	16.2	7.01	1124	0.1	-112

Tabella C-2. Determinazioni analitiche sui campioni di acque sotterranee.

id	n	data	рН	CE	DO	TOC	Cl	SO4	NO3	NH4	Al	As	Fe	Mn
			рН	µ\$/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	µg/l	µg/l	µg/l
pz01	1	01/07/2013	7.4	554	8.3	0.5	6	19	27	<0.02	3	<1	4	2
pz01	2	01/10/2013	7.4	532	8.7	0.6	7	19	29	<0.02	3	1	6	<1
pz01	3	21/01/2014	7.3	560	8.7	0.9	6	19	30	<0.02	2	<1	<5	<1
pz01	4	05/05/2014	7.3	555	8.9	0.7	7	19	31	0.02	3	1	7	<1
pz02	1	01/07/2013	7.3	628	6.0	0.5	16	32	31	<0.02	4	<1	8	2
pz02	2	01/10/2013	7.3	593	6.7	0.5	15	30	30	0.07	2	<1	<5	<1
pz02	3	21/01/2014	7.2	641	5.9	0.6	34	21	19	<0.02	1	<1	<5	<1
pz02	4	30/04/2014	7.2	590	7.3	0.6	15	30	31	<0.02	4	<1	15	2
pz03	1	03/07/2013	6.9	804	2.8	1.3	18	59	<1	1.87	1	5	1798	159
pz03	2	02/10/2013	6.7	948	3.4	2.5	28	40	<1	0.11	2	7	1966	275
pz03	3	23/01/2014	6.8	829	7.5	2.1	10	30	<1	0.10	5	3	853	267
pz03	4	30/04/2014	6.8	951	4.4	2.4	19	40	<1	0.08	2	2	1065	218
pz04	1	03/07/2013	7.5	504	3.7	<0.5	6	62	<1	0.41	2	<1	24	19
pz04	2	02/10/2013	7.5	542	6.2	<0.5	6	62	<1	<0.02	2	<1	<5	<1
pz04	3	23/01/2014	7.5	514	6.8	0.3	6	63	<1	<0.02	2	<1	11	29
pz04	4	30/04/2014	7.5	507	5.0	0.4	6	64	<1	<0.02	2	<1	10	5
pz05	1	01/07/2013	7.2	880	2.2	5.0	52	9	1	6.80	2	76	2455	243
pz05	2	01/10/2013	7.2	854	5.2	9.0	46	15	<1	12.17	19	65	4171	369
pz05	3	21/01/2014	7.1	945	5.1	7.4	45	38	<1	11.43	2	57	5468	495
pz05	4	05/05/2014	7.2	741	8.4	4.9	41	21	1	7.00	1	79	2547	370
pz06	1	01/07/2013	7.1	795	2.8	1.0	11	34	<1	0.04	11	3	157	202
pz06	2	01/10/2013	7.0	718	3.4	0.9	9	21	<1	0.19	4	10	410	205
pz06	3	21/01/2014	7.0	786	5.8	1.0	9	29	10	0.03	<]	3	56	173
pz06	4	05/05/2014	7.1	739	5.6	0.8	8	25	10	0.04	12	1	58	174
pz07	1	01/07/2013	7.1	742	2.5	5.7	13	27	<1	0.61	4	21	2872	267
pz07	2	24/09/2013	7.1	787	0.8	2.7	17	3	<1	2.37	3	56	6238	138
pz07	3	23/01/2014	7.1	709	3.3	5.5	13	59	<1	0.41	4	3	49	118
pz07	4	05/05/2014	7.1	846	3.2	3.3	22	87	<1	0.48	1	13	4542	319
pz08	1	03/07/2013	7.2	645	3.5	0.9	22	5	<1	1.89	194	14	1742	399
pz08	2	02/10/2013	7.2	743	2.5	1.1	27	1	<1	1.50	20	26	1257	712
pz08	3	23/01/2014	7.2	650	5.7	0.8	20	1	<1	1.70	<]	13	291	201
pz08	4	30/04/2014	7.2	631	3.8	1.1	20	1	<1	1.63	5	18	761	155
pz09	1	03/07/2013	7.1	634	2.1	1./	6	10	<	2.29	4	40	1424	132
pz09	2	24/09/2013	7.1	/20	2.1	1./	13	41	<	0.75	<1	10	929	100
pz09	3	23/01/2014	7.1	626	3.1	2.0	6	5	<	3.78	3	25	/9	61
pz09	4	05/05/2014	7.2	602	3.9	1.9	5	3	<	4./4	1	1/9	2202	68
pz10	1	03/07/2013	7.2	618	3.0	2.1	4	2	<1	3.24	2	162	2091	56
pz10	2	24/09/2013	7.1	553	1.5	1.6	3	<1	<1	3.67	14	165	2151	57
pziu	3	23/01/2014	7.1	641	3.8 2.7	1./	8 7	2	<	2.35	4	100	1775	64
pziu	4	05/05/2014	7.2	282	3./	1.5	1	2	< 2	3.48	3 1	115 -	Z35U	6У 105
pz11	1 0	27/06/2013	7.0	1242	-	3./	36	50	J ~1	0.21	10	5 10	1505	105
p211	2	23/07/2013	7.1	1191	1.1 2.0	4.Z	1∠ 01	07 205	×1	0.04	13	ı∠ ~1	1070	1 Z Z
p211	Л	30/04/2014	7.Z	1007	J.∠ 1 Q	4.Z	∠1 15	270 010	4	0.00	ו ס	1	10 11	04 00
pz11	4	04/07/2012	7.Z	742	4.0 5.0	4.4	10	217	с С	0.02	12	1 0	41	∠∠ 100
μετε	I	04/07/2013	1.3	/43	5.7	3.0	15	51	0	0.6/	13	7	1403	427 O F

C-5

id	n	data	рН	CE	DO	TOC	CI	SO4	NO3	NH4	Al	As	Fe	Mn
			рН	µ\$/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	µg/l	µg/l	µg/l
pz12	2	01/10/2013	7.5	498	8.5	5.0	12	12	17	<0.02	6	<1	7	<1
pz12	3	06/02/2014	7.4	609	9.2	0.7	9	22	40	0.02	5	<1	5	<1
pz12	4	05/05/2014	7.1	598	2.8	3.8	13	25	1	0.28	8	11	3423	390
pz13	1	27/06/2013	7.0	835	-	1.4	24	44	<1	0.23	1	3	291	207
pz13	2	23/09/2013	7.0	835	1.2	1.9	31	54	<1	0.30	1	5	670	153
pz13	3	22/01/2014	7.1	742	6.4	1.3	13	24	1	0.04	1	<1	<5	11
pz13	4	29/04/2014	7.0	851	5.0	1.3	28	53	1	0.16	2	<1	26	85
pz14	1	01/07/2013	7.1	887	3.6	1.8	39	76	<1	0.21	1	5	715	124
pz14	2	23/09/2013	7.2	727	1.5	1.1	26	50	3	0.03	3	<1	11	8
pz14	3	22/01/2014	6.9	1034	1.9	1.7	36	103	<1	0.30	<1	7	979	110
pz14	4	06/05/2014	6.9	1173	7.2	1.6	70	60	3	<0.02	1	<1	18	8
pz15	1	03/07/2013	6.7	2533	4.0	16.6	571	6	<1	17.40	9	196	3941	252
pz15	2	23/09/2013	6.8	1952	1.3	14.2	194	2	<1	40.50	2	79	4194	187
pz15	3	22/01/2014	7.0	1356	4.9	5.3	218	21	<1	5.32	3	6	16	109
pz15	4	29/04/2014	6.9	1450	3.3	4.5	284	10	<1	7.97	5	97	3149	101
pz16	1	01/07/2013	7.3	588	2.3	1.8	13	16	2	2.35	1	18	582	396
pz16	2	24/09/2013	7.4	544	5.1	1.7	19	22	11	0.09	16	6	16	15
pz16	3	23/01/2014	7.2	578	5.9	2.1	6	17	<1	4.93	2	14	721	155
pz16	4	06/05/2014	7.2	562	7.0	1.7	5	11	<1	6.91	6	11	1567	124
pz17	1	27/06/2013	7.1	799	-	1.6	40	58	<1	0.69	3	4	417	637
pz17	2	23/09/2013	7.3	700	1.5	1.7	29	49	<1	0.76	17	4	245	392
pz17	3	22/01/2014	7.2	716	2.2	1.9	26	35	<1	0.62	1	2	48	393
pz17	4	29/04/2014	7.1	659	4.1	1.4	21	25	<1	0.68	5	5	512	290
pz18	1	27/06/2013	7.0	866	-	1.4	30	52	<1	0.68	<1	2	1666	131
pz18	2	23/09/2013	7.1	734	1.7	1.3	14	39	7	0.03	1	<1	<5	173
pz18	3	22/01/2014	7.0	895	1.8	1.5	28	58	<1	0.48	1	<1	125	217
pz18	4	06/05/2014	7.0	866	7.4	1.5	31	62	<1	0.64	2	2	2166	296
pz19	1	01/07/2013	7.0	749	2.7	2.6	18	2	<1	3.95	2	30	1205	175
pz19	2	25/09/2013	7.1	762	2.2	2.3	19	2	<1	4.50	15	33	1304	123
pz19	3	23/01/2014	7.0	793	5.1	2.8	18	1	<1	4.53	1	34	1748	82
pz19	4	06/05/2014	6.9	763	6.9	3.0	19	1	<1	4.46	1	33	1811	83
pz20	1	01/07/2013	7.1	838	3.2	4.6	20	12	<1	7.90	3	38	1359	118
pz20	2	25/09/2013	7.1	855	2.5	4.9	20	11	<1	8.60	2	39	1355	107
pz20	3	27/01/2014	6.9	874	1.9	6.3	16	2	<1	9.60	2	45	1655	89
pz20	4	06/05/2014	7.0	863	6.8	5.2	24	13	<1	8.70	6	40	1540	223
pz21	1	01/07/2013	7.4	573	3.1	3.0	15	17	4	2.25	2	50	1093	365
pz21	2	25/09/2013	7.0	864	2.5	4.6	19	11	<1	5.40	73	102	2208	646
pz21	3	27/01/2014	6.9	956	1.9	4.2	21	42	<1	1.62	2	24	1837	431
pz21	4	29/04/2014	6.9	911	7.4	3.8	21	<]	<1	3.24	5	87	3943	440
pz22	1	04/07/2013	7.3	830	5.6	1.3	32	36	<1	0.79	121	26	2035	257
pz22	2	30/09/2013	7.2	855	4.6	1.8	56	16	<1	0.19	1	9	192	239
pz22	3	29/01/2014	7.2	808	6.0	1.8	31	33	<1	0.72	2	13	14	238
pz22	4	06/05/2014	7.1	835	7.6	1.3	32	34	<1	0.73	3	26	1813	243
pz23	1	03/07/2013	6.8	2030	2.3	1.7	476	32	<1	0.46	2	7	1987	540
pz23	2	25/09/2013	6.9	1874	2.4	1.3	431	37	<1	1.06	20	14	3035	547
pz23	3	27/01/2014	6.8	2183	3.6	1.4	492	31	1	0.79	1	4	1474	497

id	n	data	nH	CE	DO	TOC	CL	504	NO3	NH4	AI	٨s	Fe	Mn
iù		dulu	рП	u\$/cm	ma/l	ma/l	ma/l	504 ma/l	ma/l	ma/l		ua/l		ua/l
n723	٨	06/05/2014	6.9	2166	7 3	13	543	35	<1	0.95	<1	2	1641	521
pzzo pz24	1	01/07/2013	74	682	3.0	1.8	24	22	7	0.75	4	6	10	366
p22 1	2	25/09/2013	7.2	864	2.7	1.3	70	38	, 21	1 18	15	8	15	139
p22 1	3	27/01/2014	7.0	942	41	2.3	49	42	12	1.10	2	9	13	229
pzz4	4	29/04/2014	7.0	998	4.9	1.4	61	54	6	1.10	2	ý 9	14	358
pz2 1	1	03/07/2013	7.0	609	3.3	2.0	31	19	<1	0.10	2	4	266	441
pz20	2	25/09/2013	7.1	1005	2.4	0.8	27	116	<1	0.16	13	4	26	735
p725	3	27/01/2014	72	.540	7.0	3.5	8	12	1	<0.02	31	<1	33	6
pz20	4	06/05/2014	7.0	754	6.8	1.8	20	37	<1	0.11	18	2	135	584
p=26	1	03/07/2013	6.8	1037	2.6	1.8	13	144	37	0.04	1	1	329	1190
pz20	2	25/09/2013	7.0	985	3.0	1.0	13	115	34	0.04	1	1	259	1139
pz20	3	27/01/2014	6.9	850	2.2	1.4	9	80	18	0.02	2	<1	57	921
pz26	4	28/04/2014	6.8	1172	4 4	19	11	205	.39	0.13	2	1	267	1274
pz27	1	02/07/2013	7.2	446	2.0	5.8	4	11	1	0.11	6	1	15	144
pz27	2	27/09/2013	7.3	427	1.8	5.5	4	9	<1	0.47	6	11	80.5	240
pz27	-	29/01/2014	7.7	170	7.9	2.7	2	4	<1	<0.02	11	1	7	2
pz27	4	28/04/2014	7.5	233	6.5	8.6	-	11	2	0.04	16	1	11	19
pz28	1	28/06/2013	7.0	1147	4.3	5.4	61	8	<1	15 70	3	52	2108	136
pz28	2	27/09/2013	6.9	1179	0.9	6.7	58	4	<1	14 70	2	52	3167	198
pz28	3	29/01/2014	7.7	1052	3.8	6.9	64	6	<1	10.68	2	68	2152	74
p728	4	28/04/2014	6.8	1168	4.2	6.5	66	4	<1	18.32	4	48	2931	67
pz20	1	02/07/2013	6.9	921	2.7	2.8	50	.34	<1	1.59	2	88	3781	298
p227	2	27/09/2013	7 1	877	1.6	2.8	34	35	<1	0.53	2	20	1522	397
p227	3	30/01/2014	7.0	817	6.5	2.5	39	23	1	0.00	1	8	82	211
pz27	4	28/04/2014	7.0	758	3.6	2.0	43	19	3	0.32	1	5	46	120
pz27	1	02/07/2013	7.3	813	2.4	3.7	36	65	26	0.11	3	1	5	131
pz30	2	26/09/2013	7.3	640	2.4	22	14	32	<1	0.10	14	<1	18	163
pz30	3	30/01/2014	7.2	727	7.5	7 9	8	23	2	0.05	2	<1	8	310
pz30	4	28/04/2014	7.4	602	5.7	0.9	7	19	1	0.04	2	<1	<5	1
pz31	1	02/07/2013	7.0	993	71	3.3	31	155	<1	1 64	<1	56	5186	1.52
pz31	2	26/09/2013	6.9	1008	0.7	5.6	29	41	<1	5.68	3	71	4100	135
pz31	3	30/01/2014	7.0	861	5.2	1.6	10	1.58	1	0.02	2	1	38	51
pz31	4	28/04/2014	7.0	858	4.1	1.3	12	160	1	0.02	-	2	7	35
pz32	1	02/07/2013	7.1	721	2.1	1.1	24	24	3	0.10	<1	5	6	44
pz32	2	30/09/2013	7.1	859	2.1	1.2	31	38	<1	0.73	1	19	264	61
pz32	3	06/02/2014	7.2	630	3.8	2.3	13	17	4	0.04	5	3	10	8
pz32	4	28/04/2014	7.1	762	5.0	1.9	36	20	1	0.15	6	3	28	106
pz33	1	28/06/2013	6.9	125.3	3.9	5.8	105	115	2	6.20	4	3	413	281
pz33	2	26/09/2013	6.7	1310	1.3	6.2	72	8	<]	14.25	3	22	10347	702
pz33	3	30/01/2014	6.8	1551	6.8	7.4	103	118	4	7.04	2	3	1022	347
pz33	4	28/04/2014	6.7	1377	3.0	5.6	77	31	<]	15.46	2	21	22077	607
pz34	1	28/06/2013	7.2	534	2.3	1.5	21	16	1	0.22	-	8	269	273
pz34	2	26/09/2013	7.5	458	1.2	1.7	25	14	<]	0.08	2	- 15	260	176
pz34	3	30/01/2014	7.1	548	4.9	2.3	10	17	2	0.18	-	9	318	285
pz34	4	28/04/2014	7.2	572	4.2	1.6	10	16	-	0.27	1	10	449	298
pz35	1	03/07/2013	7.0	803	2.3	67	6	<1	<1	23.40	3	6	1102	117
P200		00,0772010	7.0	000	2.0	0.7	0		~ 1	20.40	0	0	1102	11/

pH μ\$/cm mg/l mg/l <th< th=""><th>μg/l 114 266 418</th></th<>	μg/l 114 266 418
pz35201/10/20137.27772.35.632<1	114 266 418
p235 3 23/01/2014 6.9 794 5.1 1.1 27 8 5 1.89 2 <1 1.3 p235 4 30/04/2014 6.9 745 4.1 1.4 21 8 3 4.50 1 <1 58 p236 1 27/06/2013 7.1 752 - 1.5 25 25 <1 1.71 2 21 1102 p236 3 22/01/2014 7.1 685 1.3 3.6 9 5 <1 1.88 3 1.4 1355 p237 1 27/06/2013 7.0 789 - 2.7 100 5 <1 5.91 4 10 1841 p237 3 22/01/2013 7.0 803 1.3 1.9 8 5 1.83 2.4 1.1 p237 4 06/05/2014 6.9 790 6.7 2.4 100 4	266 418
p235 4 30/04/2014 6.9 745 4.1 1.4 21 8 3 4.50 1 <1 51 p236 1 27/06/2013 7.1 752 - 1.5 25 25 <1 1.71 2 21 1102 p236 2 23/09/2013 7.2 809 1.1 1.7 29 46 <1 0.60 2 8 1030 p236 3 22/01/2014 7.1 685 1.3 3.6 9 5 <1 1.88 3 1.4 1365 p237 1 27/06/2013 7.0 7.89 - 2.7 10 5 <1 5.91 4 10 1814 p237 3 23/01/2014 7.0 817 3.4 1.9 6 16 3 0.43 2 2 p238 1 02/07/2013 7.0 711 1.3 45 11	418
p236 1 27/06/2013 7.1 752 - 1.5 25 25 <1 1.71 2 21 1102 p236 2 23/09/2013 7.2 809 1.1 1.7 29 46 <1 0.60 2 8 1030 p236 3 22/01/2014 7.1 685 1.3 3.6 9 5 <1 1.88 3 14 1365 p236 4 29/04/2014 7.0 718 3.6 2.4 14 177 <1 2.81 3 49 3283 p237 1 27/06/2013 7.0 789 - 2.7 100 5 <1 5.91 4 100 141 p237 3 23/01/2014 6.9 790 6.7 2.4 100 4 <1 6.33 0.43 2 2 1 p238 2 27/09/2013 7.0 1171 1.3	
p236223/09/20137.28091.11.72946<10.60281030p236322/01/20147.16651.33.695<1	124
p236322/01/20147.16851.33.695<11.8831.41.36p236429/04/20147.07183.62.41417<1	128
p236429/04/20147.07183.62.41417<12.813493283p237127/06/20137.0789-2.7105<1	58
pz37127/06/20137.0789-2.7105<17.822601871pz37224/09/20137.18031.31.985<1	110
p237224/09/20137.18031.31.985<15.914101841p237323/01/20147.08173.41.961630.432211p237406/05/20146.97906.72.4104<1	74
pz37323/01/20147.08173.41.961630.43221pz37406/05/20146.97906.72.4104<1	173
p237406/05/20146.97906.72.4104<16.3816.32812p238102/07/20136.98832.41.55429<1	80
p238102/07/20136.98832.41.55429<10.044198p238227/09/20137.07911.71.34511<1	107
p238227/09/20137.07.911.71.34511<10.122139p238327/01/20146.911562.53.2547710.032<1	937
pz38327/01/20146.911562.53.2547710.032<148pz38406/05/20146.99566.72.14750<1	707
pz38406/05/20146.99566.72.14750<10.041<1138pz39102/07/20137.010202.12.2496<1	746
pz39102/07/20137.010202.12.2496<11.3621955898pz39227/09/20137.110821.52.2652<1	905
pz39227/09/20137.110821.52.2652<11.2112406237pz39329/01/20146.912212.05.06359<1	527
pz39329/01/20146.912212.05.06359<10.527412539pz39428/04/20147.010673.52.4642<1	318
pz39428/04/20147.010673.52.4642<11.04142010799pz40103/07/20137.07743.41.6225021.30122125pz40224/09/20137.17151.61.21851<1	762
pz40103/07/20137.07743.41.6225021.30122125pz40224/09/20137.17151.61.21851<1	285
pz40224/09/20137.17151.61.21851<11.401104832pz40323/01/20147.08543.71.92273<1	231
pz40323/01/20147.08543.71.92273<11.10321152pz40405/05/20147.08815.81.32582<1	170
pz40405/05/20147.08815.81.32582<11.40321102pz41103/07/20137.26935.40.94027151.171<1	199
pz41103/07/20137.26935.40.94027151.171<1<5pz41225/09/20137.27742.61.1682990.145210pz41327/01/20147.17307.01.0202950<0.02	342
pz41225/09/20137.27742.61.1682990.145210pz41327/01/20147.17307.01.0202950<0.02	2
pz41327/01/20147.17307.01.0202950<0.023<15pz41406/05/20147.17767.91.719291130.042<1	57
pz41 4 06/05/2014 7.1 776 7.9 1.7 19 29 113 0.04 2 <1 25 pz42 1 03/07/2013 7.0 714 2.0 2.3 41 14 <1	9
pz42 1 03/07/2013 7.0 714 2.0 2.3 41 14 <1 3.17 1 11 1584	28
	175
pz42 2 01/10/2013 7.3 520 3.1 1.5 22 7 <1 3.74 2 19 1047	68
pz42 3 21/01/2014 7.0 856 4.9 1.9 28 35 <1 2.13 2 4 206	525
pz42 4 05/05/2014 7.0 976 3.8 2.9 76 41 <1 16.11 2 10 2179	255
pz43 1 01/07/2013 7.0 909 3.1 3.4 27 157 <1 0.37 4 14 5233	212
pz43 2 01/10/2013 7.0 760 3.8 4.7 4 55 2 0.06 1 82 4472	233
pz43 3 21/01/2014 6.9 911 7.2 3.7 26 99 <1 0.36 8 2 29	192
pz43 4 05/05/2014 7.0 883 5.8 6.0 17 92 <1 0.36 1 18 4182	189
pz44 1 01/07/2013 7.5 437 2.4 0.9 2 3 <1 1.65 1 73 1293	49
pz44 2 01/10/2013 7.2 560 2.8 1.3 12 8 <1 1.73 1 10 380	88
pz44 3 21/01/2014 7.3 485 3.3 1.1 4 5 <1 1.79 5 70 1583	67
pz44 4 05/05/2014 7.4 416 3.4 1.3 2 2 <1 1.75 1 80 1434	41
pz45 1 03/07/2013 7.2 630 4.4 2.6 13 4 <1 5.32 2 35 2881	209
pz45 2 02/10/2013 7.3 487 3.7 1.6 47 5 <1 0.16 1 3 29	19
pz45 3 23/01/2014 7.1 655 6.3 2.7 11 1 <1 7.76 1 29 2048	57
pz45 4 30/04/2014 7.2 631 3.4 2.8 12 1 <1 6.64 2 30 3031	134
pz46 l 03/07/2013 7.0 951 2.0 l.6 40 48 l 2.26 7 32 3248	
pz46 2 01/10/2013 7.2 649 3.7 1.4 22 20 <1 1.72 1 29 1822	/0
pz46 3 23/01/2014 7.1 812 3.4 1.5 36 22 <1 2.39 1 26 2392	70 44

id	n	data	рН	CE	DO	TOC	Cl	SO4	NO3	NH4	Al	As	Fe	Mn
			рН	µ\$/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	µg/l	µg/l	µg/l
pz46	4	05/05/2014	7.0	1029	4.8	1.8	71	96	<1	1.94	2	27	2844	75
pz47	1	28/06/2013	6.8	955	2.7	2.2	61	3	1	11.20	1	<1	3536	331
pz47	2	26/09/2013	6.9	937	1.0	2.1	48	2	<]	9.80	1	<1	2862	325
pz47	3	30/01/2014	6.9	951	3.5	2.6	55	<1	<1	7.14	<]	<1	1885	274
pz47	4	28/04/2014	6.8	994	4.7	2.3	64	<1	<1	12.45	2	<1	4921	413
pz48	1	03/07/2013	7.0	1079	4.4	3.7	71	102	<1	5.57	2	3	1630	151
pz48	2	02/10/2013	6.9	1028	2.1	6.5	25	13	<1	10.63	22	5	1194	72
pz48	3	23/01/2014	7.0	1178	3.6	2.7	84	142	<1	4.88	12	5	2164	179
pz48	4	30/04/2014	7.0	1110	3.3	4.0	75	72	<1	6.77	3	3	1656	119
pz49	1	27/06/2013	6.8	1100	-	2.3	72	77	<1	1.36	4	<1	72	286
pz49	2	24/09/2013	7.0	1020	1.4	3.5	49	26	<1	4.15	12	22	5588	166
pz49	3	22/01/2014	7.0	967	2.9	3.0	15	53	4	0.26	2	1	73	41
pz49	4	29/04/2014	6.9	917	5.3	2.1	14	52	4	0.31	2	<1	144	79
pz50	1	27/06/2013	6.8	1370	-	5.8	22	224	<1	3.13	3	10	2344	198
pz50	2	23/09/2013	7.1	784	1.2	2.8	28	45	<1	0.80	13	30	1089	355

Appendice D – Confronto valori misurati nelle diverse matrici: suolo, eluato e acque sotterranee

Tabella D-1. Concentrazione di alluminio misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee.

piezometro	parametro	suolo	eluato	acqua 1	acqua 2	acqua 3	acqua 4
		g/kg	µg/l	µg/l	µg/l	µg/l	µg/l
pz01	Al	6.4	3	3	3	2	3
pz02	Al	14.6	7	4	2	1	4
pz03	Al	18.7	4	1	2	5	2
pz04	Al	10.6	22	2	2	2	2
pz05	Al	40	9	2	19	2	1
pz06	Al	8.4	8	11	4	<1	12
pz08	Al	15	8	194	20	<1	5
pz09	Al	6.1	7	4	<]	3	1
pz10	Al	13.3	9	2	14	4	3
pzll	Al	6.1	6	1	13	1	2
pz13	Al	6.9	7	1	1	1	2
pz14	Al	12.8	4	1	3	<]	1
pz15	Al	19	5	9	2	3	5
pz16	Al	13.4	9	1	16	2	6
pz17	Al	11	6	3	17	1	5
pz18	Al	19.1	4	<1	1	1	2
pz19	Al	7.8	4	2	15	1	1
pz20	Al	36	4	3	2	2	6
pz21	Al	21	4	2	73	2	5
pz23	Al	15.5	7	2	20	1	<]
pz24	Al	10.5	6	4	15	2	2
pz25	Al	15	3	2	13	31	18
pz26	Al	14.3	2	1	1	2	2
pz27	Al	29	2	6	6	11	16
pz28	Al	25	4	3	2	2	4
pz29	Al	35	2	2	2	1	1
pz30	Al	12	3	3	14	2	2
pz31	Al	21	3	<1	3	2	1
pz33	Al	23	3	4	3	2	2
pz34	Al	43	7	1	2	1	1
pz35	Al	14.5	3	3	224	2	1
pz36	Al	12.1	3	2	2	3	3
pz37	Al	10.8	4	2	4	2	1
pz38	Al	8.1	2	4	2	2	1

piezometro	parametro	suolo	eluato	acqua 1	acqua 2	acqua 3	acqua 4
		mg/kg	µg/l	µg/l	µg/l	µg/l	µg/l
pz01	As	7.5	2	<]	1	<1	1
pz02	As	11.5	4	<]	<]	<]	<1
pz03	As	19.6	6	5	7	3	2
pz04	As	6.6	3	<]	<]	<]	<1
pz05	As	19.9	8	76	65	57	79
pz06	As	5.8	2	3	10	3	1
pz08	As	8.3	6	14	26	13	18
pz09	As	5.7	3	40	10	25	179
pz10	As	6.1	4	162	165	100	115
pzll	As	4.9	4	5	12	<1	1
pz13	As	3.6	<]	3	5	<1	<1
pz14	As	6.9	2	5	<1	7	<1
pz15	As	5.7	1	196	79	6	97
pz16	As	8.4	5	18	6	14	11
pz17	As	4.6	<1	4	4	2	5
pz18	As	14	1	2	<]	<]	2
pz19	As	12.2	8	30	33	34	33
pz20	As	18.1	6	38	39	45	40
pz21	As	8.5	7	50	102	24	87
pz23	As	9.6	7	7	14	4	2
pz24	As	6.6	9	6	8	9	9
pz25	As	22	<1	4	4	<1	2
pz26	As	2.1	<]	1	1	<1	1
pz27	As	33	<]	1	11	1	1
pz28	As	10.7	3	52	52	68	48
pz29	As	22	<1	88	20	8	5
pz30	As	3.9	<1	1	<1	<1	<1
pz31	As	7.3	4	56	71	1	2
pz33	As	15.7	9	3	22	3	21
pz34	As	47	6	8	15	9	10
pz35	As	13.9	8	6	11	<1	<1
pz36	As	5.8	3	21	8	14	49
pz37	As	18.9	6	60	10	2	63
pz38	As	7.1	<1	1	1	<1	<1

Tabella D-2. Concentrazione di arsenico misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee.

piezometroparametrosuoloeluatoacqua 1acqua 2acqua 3acqu g/kg $\mu g/l$ $p201$ Fe 8.2 <5<56<57 $p202$ Fe 22 7 8 <5<515 $p203$ Fe 25 5 1798 1966 8533 106 $p204$ Fe 19.4 59 24 <51110 $p205$ Fe 31 28 2455 4171 5468 254 $p206$ Fe 10.5 10 157 410 56 56 $p208$ Fe 15.8 9 1742 1257 291 76 $pz09$ Fe 6 6 1242 297 2205 $pz10$ Fe 14 28 2091 2151 1995 235 $pz11$ Fe 7.7 <5 701 1595 18 441 $pz13$ Fe 11.1 <5 291 670 <5 266 $pz14$ Fe 16.9 <5 715 11 979 88 $pz17$ Fe 12.9 <5 417 245 48 517 $pz18$ Fe 19.1 <5 1666 <5 125 216 $pz21$ Fe 22 8 1093 2208 1837 394 $pz24$ <								
g/kg $\mu g/l$ <t< td=""><td>piezometro</td><td>parametro</td><td>suolo</td><td>eluato</td><td>acqua 1</td><td>acqua 2</td><td>acqua 3</td><td>acqua 4</td></t<>	piezometro	parametro	suolo	eluato	acqua 1	acqua 2	acqua 3	acqua 4
pz01 Fe 8.2 <5 <5 6 <5 7 pz02 Fe 22 7 8 <5			g/kg	µg/l	µg/l	µg/l	µg/l	µg/l
pz02Fe2278 < 5 < 5 15pz03Fe25517981966853106pz04Fe19.45924 < 5 1110pz05Fe3128245541715468254pz06Fe10.5101574105656pz08Fe15.891742125729176pz09Fe66142492979220pz10Fe1428209121511995235pz11Fe7.7<5	pz01	Fe	8.2	<5	<5	6	<5	7
pz03 Fe 25 5 1798 1966 853 106 pz04 Fe 19.4 59 24 <5 11 10 pz05 Fe 31 28 2455 4171 5468 254 pz06 Fe 10.5 10 157 410 56 58 pz08 Fe 15.8 9 1742 1257 291 76 pz09 Fe 6 6 14424 929 79 220 pz11 Fe 7.7 <5 701 1595 18 41 pz13 Fe 11.1 <5 291 670 <5 26 pz14 Fe 16.9 <5 715 11 979 18 pz15 Fe 15.3 <5 3941 4194 16 314 pz16 Fe 14.5 11 582 16 721 156 pz17 Fe 10.4 7 1205 1304 1748 181 <	pz02	Fe	22	7	8	<5	<5	15
pz04Fe19.45924<51110pz05Fe3128245541715468254pz06Fe10.5101574105658pz08Fe15.891742125729176pz09Fe66142492979220pz10Fe1428209121511995235pz11Fe7.7<5	pz03	Fe	25	5	1798	1966	853	1065
pz05 Fe 31 28 2455 4171 5468 254 pz06 Fe 10.5 10 157 410 56 58 pz08 Fe 15.8 9 1742 1257 291 76 pz09 Fe 6 6 1424 929 79 220 pz10 Fe 14 28 2091 2151 1995 235 pz11 Fe 7.7 <5	pz04	Fe	19.4	59	24	<5	11	10
pz06Fe10.5101574105658pz08Fe15.891742125729176pz09Fe66142492979220pz10Fe1428209121511995235pz11Fe7.7<5	pz05	Fe	31	28	2455	4171	5468	2547
pz08Fe15.891742125729176pz09Fe66142492979220pz10Fe1428209121511995235pz11Fe7.7<5	pz06	Fe	10.5	10	157	410	56	58
p209Fe66142492979220p210Fe1428209121511995235p211Fe7.7<5	pz08	Fe	15.8	9	1742	1257	291	761
pz10Fe1428209121511995235pz11Fe7.7<5	pz09	Fe	6	6	1424	929	79	2202
pz11Fe 7.7 <5 701 1595 18 41 pz13Fe 11.1 <5 291 670 <5 226 pz14Fe 16.9 <5 715 11 979 18 pz15Fe 15.3 <5 3941 4194 16 314 pz16Fe 14.5 11 582 16 721 156 pz17Fe 12.9 <5 417 245 48 511 pz18Fe 19.1 <5 1666 <5 125 216 pz19Fe 10.4 7 1205 1304 1748 181 pz20Fe 28 <5 1359 1355 1655 154 pz21Fe 22 8 1093 2208 1837 394 pz23Fe 18.6 11 1987 3035 1474 164 pz24Fe 14.4 <5 329 259 57 266 pz25Fe 25 <5 266 26 33 133 pz26Fe 14.4 <5 329 259 57 266 pz30Fe 31 <5 5186 4100 38 7 pz31Fe 31 14 413 10347 1022 2207 pz34Fe 37 22 269 260 318 444 pz35Fe 18.6 5	pz10	Fe	14	28	2091	2151	1995	2350
pz13Fe11.1 <5 291 670 <5 24pz14Fe16.9 <5 7151197918pz15Fe15.3 <5 3941419416314pz16Fe14.51158216721156pz17Fe12.9 <5 4172454851:pz18Fe19.1 <5 1666 <5 125216pz19Fe10.47120513041748181pz20Fe28 <5 135913551655154pz21Fe228109322081837394pz23Fe18.611198730351474164pz24Fe14.4 <5 32925957266pz25Fe25 <5 2662633133pz26Fe14.4 <5 32925957266pz27Fe34 <5 15805711pz28Fe26 <5 51864100387pz31Fe31144131034710222207pz33Fe31144131034710222207pz34Fe3722269260318444pz35Fe18.98110218621358pz36Fe <td>pz11</td> <td>Fe</td> <td>7.7</td> <td><5</td> <td>701</td> <td>1595</td> <td>18</td> <td>41</td>	pz11	Fe	7.7	<5	701	1595	18	41
pz14 Fe 16.9 <5 715 11 979 18 pz15 Fe 15.3 <5	pz13	Fe	11.1	<5	291	670	<5	26
pz15Fe15.3<53941419416314pz16Fe14.51158216721156pz17Fe12.9<5	pz14	Fe	16.9	<5	715	11	979	18
pz16Fe14.51158216721156pz17Fe12.9<5	pz15	Fe	15.3	<5	3941	4194	16	3149
pz17Fe12.9<54172454851pz18Fe19.1<5	pz16	Fe	14.5	11	582	16	721	1567
pz18Fe19.1<51666<5125216pz19Fe10.47120513041748181pz20Fe28<5	pz17	Fe	12.9	<5	417	245	48	512
pz19Fe10.47120513041748181pz20Fe28<5	pz18	Fe	19.1	<5	1666	<5	125	2166
pz20Fe28<5135913551655154pz21Fe228109322081837394pz23Fe18.611198730351474164pz24Fe14.8<5	pz19	Fe	10.4	7	1205	1304	1748	1811
pz21Fe228109322081837394pz23Fe18.611198730351474164pz24Fe14.8<5	pz20	Fe	28	<5	1359	1355	1655	1540
pz23Fe18.611198730351474164pz24Fe14.8<5	pz21	Fe	22	8	1093	2208	1837	3943
pz24Fe14.8<510151314pz25Fe25<5	pz23	Fe	18.6	11	1987	3035	1474	1641
pz25Fe25<5266263313.pz26Fe14.4<532925957266pz27Fe34<515805711pz28Fe26<5210831672152293pz29Fe31<53781152282466pz30Fe15.3<55188<55pz31Fe26<551864100387pz33Fe31144131034710222203pz34Fe3722269260318449pz35Fe18.98110218621358pz36Fe15.69110210301365328pz37Fe18.651871184111281pz38Fe11.68983948133	pz24	Fe	14.8	<5	10	15	13	14
pz26Fe14.4<532925957260pz27Fe34<5	pz25	Fe	25	<5	266	26	33	135
pz27Fe34<515805711pz28Fe26<5	pz26	Fe	14.4	<5	329	259	57	267
pz28Fe26<5210831672152293pz29Fe31<5	pz27	Fe	34	<5	15	805	7	11
pz29Fe31<5378115228246pz30Fe15.3<5	pz28	Fe	26	<5	2108	3167	2152	2931
pz30Fe15.3<55188<5pz31Fe26<5	pz29	Fe	31	<5	3781	1522	82	46
pz31Fe26<551864100387pz33Fe31144131034710222202pz34Fe3722269260318449pz35Fe18.98110218621358pz36Fe15.69110210301365328pz37Fe18.651871184111281pz38Fe11.68983948138	pz30	Fe	15.3	<5	5	18	8	<5
pz33Fe31144131034710222201pz34Fe3722269260318449pz35Fe18.98110218621358pz36Fe15.69110210301365328pz37Fe18.651871184111281pz38Fe11.68983948138	pz31	Fe	26	<5	5186	4100	38	7
pz34Fe372226926031844'pz35Fe18.98110218621358pz36Fe15.69110210301365328pz37Fe18.651871184111281pz38Fe11.68983948138	pz33	Fe	31	14	413	10347	1022	22077
pz35Fe18.98110218621358pz36Fe15.69110210301365328pz37Fe18.651871184111281pz38Fe11.68983948138	pz34	Fe	37	22	269	260	318	449
pz36 Fe 15.6 9 1102 1030 1365 328 pz37 Fe 18.6 5 1871 1841 11 281 pz38 Fe 11.6 8 98 39 48 136	pz35	Fe	18.9	8	1102	1862	13	58
pz37 Fe 18.6 5 1871 1841 11 281 pz38 Fe 11.6 8 98 39 48 136	pz36	Fe	15.6	9	1102	1030	1365	3283
pz38 Fe 11.6 8 98 39 48 136	pz37	Fe	18.6	5	1871	1841	11	2812
	pz38	Fe	11.6	8	98	39	48	138

Tabella D-3. Concentrazione di ferro misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee.

piezometro	parametro	suolo	eluato	acqua 1	acqua 2	acqua 3	acqua 4
		mg/kg	µg/l	µg/l	µg/l	µg/l	µg/l
pz01	Mn	244	435	2	<]	<]	<1
pz02	Mn	376	1240	2	<]	<]	2
pz03	Mn	447	1230	159	275	267	218
pz04	Mn	390	1440	19	<]	29	5
pz05	Mn	469	845	243	369	495	370
pz06	Mn	228	970	202	205	173	174
pz08	Mn	355	1070	399	712	201	155
pz09	Mn	169	410	132	100	61	68
pz10	Mn	315	1070	56	59	64	69
pz11	Mn	200	260	105	122	34	22
pz13	Mn	210	350	207	153	11	85
pz14	Mn	363	1325	124	8	110	8
pz15	Mn	318	710	252	187	109	101
pz16	Mn	316	970	396	15	155	124
pz17	Mn	228	560	637	392	393	290
pz18	Mn	486	2130	131	173	217	296
pz19	Mn	243	725	175	123	82	83
pz20	Mn	491	1540	118	107	89	223
pz21	Mn	412	1985	365	646	431	440
pz23	Mn	284	870	540	547	497	521
pz24	Mn	334	205	366	139	229	358
pz25	Mn	452	215	441	735	6	584
pz26	Mn	320	1700	1190	1139	921	1274
pz27	Mn	639	125	144	240	2	19
pz28	Mn	493	1770	136	198	74	67
pz29	Mn	459	310	298	397	211	120
pz30	Mn	271	440	131	163	310	1
pz31	Mn	493	1790	152	135	51	35
pz33	Mn	507	1390	281	702	347	607
pz34	Mn	832	1070	273	176	285	298
pz35	Mn	423	1215	117	114	266	418
pz36	Mn	359	900	124	128	58	110
pz37	Mn	335	1180	74	173	80	107
pz38	Mn	269	560	937	707	746	905

Tabella D-4. Concentrazione di manganese misurate nel campione di suolo prelevato nell'orizzonte profondo, nell'eluato e nei quattro campioni di acque sotterranee.

Appendice E – Distribuzione spaziale parametri suoli

Figura E-1. Distribuzione spaziale della % di calcare totale nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-2. Distribuzione spaziale della % carbonio organico nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-3. Distribuzione spaziale della capacità di scambio cationico (meq/100g) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-4. Distribuzione spaziale del pH nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-5. Distribuzione spaziale della % di argilla nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-6. Distribuzione spaziale della % di limo fine nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-7. Distribuzione spaziale della % di limo grosso nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-8. Distribuzione spaziale della % di limo nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-9. Distribuzione spaziale della % di sabbia nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-10. Distribuzione spaziale dell' alluminio (g/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-11. Distribuzione spaziale dell'arsenico (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-12. Distribuzione spaziale del berillio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-13. Distribuzione spaziale del cadmio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-14. Distribuzione spaziale del cobalto (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-15. Distribuzione spaziale del cromo (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-16. Distribuzione spaziale del rame (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-17. Distribuzione spaziale del ferro (g/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-18. Distribuzione spaziale del mercurio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-19. Distribuzione spaziale del manganese (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-20. Distribuzione spaziale del nichel (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-21. Distribuzione spaziale del piombo (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-22. Distribuzione spaziale dell'antimonio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-23. Distribuzione spaziale del selenio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-24. Distribuzione spaziale dello stagno (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-25. Distribuzione spaziale del vanadio (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Figura E-26. Distribuzione spaziale dello zinco (mg/kg) nei campioni di terreno prelevati dall' orizzonte superficiale (1) e profondo (2).

Appendice F – Distribuzione spaziale parametri acque

Figura F-1. Distribuzione spaziale del pH nei campioni di acque sotterranee.

Figura F-2. Distribuzione spaziale della conducibilità elettrica (µS/cm) nei campioni di acque sotterranee.

Figura F-3. Distribuzione spaziale del carbonio organico totale (mg/l) nei campioni di acque sotterranee.

Figura F-4. Distribuzione spaziale dei cloruri (mg/l) nei campioni di acque sotterranee.

Figura F-5. Distribuzione spaziale dei solfati (mg/l) nei campioni di acque sotterranee.

Figura F-6. Distribuzione spaziale dei nitrati (mg/I NO3) nei campioni di acque sotterranee.

Figura F-7. Distribuzione spaziale dell'ammoniaca (mg/l NH4) nei campioni di acque sotterranee.

Figura F-8. Distribuzione spaziale della'alluminio ($\mu g/I$) ei campioni di acque sotterranee.

Figura F-9. Distribuzione spaziale dell'arsenico (μ g/l) nei campioni di acque sotterranee.

Figura F-10. Distribuzione spaziale del ferro (µg/l) nei campioni di acque sotterranee.

Figura F-11. Distribuzione spaziale del manganese (µg/l) nei campioni acque sotterranee.

Appendice G – Distribuzione spaziale Al, As, Fe e Mn nelle diverse matrici

Tabella G-1. Distribuzione spaziale dell'alluminio nelle diverse matrici: acque, eluato e suolo.

Tabella G-2. Distribuzione spaziale dell'arsenico nelle diverse matrici: acque, eluato e suolo.

Tabella G-3. Distribuzione spaziale del ferro nelle diverse matrici: acque, eluato e suolo.

Tabella G-4. Distribuzione spaziale del manganese nelle diverse matrici: acque, eluato e suolo.

Appendice H – Outlier, tipo di distribuzione e calcolo percentili

Per ciascuno dei parametri sono riportati i seguenti grafici:

- a) grafico della distribuzione cumulativa empirica dei dati (empirical cumulative distribution function, ecdf-plot);
- b) boxplot per dati censored (cenboxplot);
- c) confronto tra la distribuzione cumulativa empirica dei dati e la distribuzione normale;
- d) quantile-quantile plot per una distribuzione normale;
- e) confronto tra la distribuzione cumulativa empirica dei dati e la distribuzione lognormale;
- f) quantile-quantile plot per una distribuzione lognormale;
- g) confronto tra la distribuzione cumulativa empirica dei dati e la distribuzione gamma;
- h) quantile-quantile plot per una distribuzione gamma.

I grafici sono stati realizzati con le funzioni ecdfPlotCensored, cdfCompareCensored e qqPlotCensored del pacchetto EnvStats e cenboxplot del pacchetto NADA.

La bontà dell'adattamento è stata testata con le funzioni gofTestCensored e gofTest del pacchetto EnvStats e lillie.test del pacchetto notes. In caso di risultati discordanti tra i diversi test si è ritenuto che i dati non contenessero sufficienti informazioni per assumere il tipo di distribuzione ipotizzata.

Per il test di Walsh è stata creata una funzione seguendo quanto riportato nel documento EPA's QA/G-9S.

Per il calcolo dei percentili è stata utilizzata la funzione eqnpar per il calcolo dei quantili in caso di distribuzione non parametrica e eqgamma in caso di distribuzione gamma.

Tabella H-1. Risultati del test di Walsh per l'individuazione degli outlier (a=0.10).

nome	n dati	statistica	n outliers	valori
ammoniaca	169	10,83	1	40.5
arsenico	169	111,23	1	420
ferro	169	2913,68	3	10347, 10799, 22077
manganese	169	1,83	2	905, 937

Figura H-1. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'arsenico.

Figura H-2. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'arsenico dopo la rimozione del valore estremo di 420 µg/l.

Figura H-3. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del ferro.

Figura H-4. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del ferro dopo la rimozione dei tre valori estremi di 10347, 10799, 22077.

Figura H-5. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del manganese.

Figura H-6. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo del manganese dopo la rimozione dei due valori estremi di 905, 937.

Figura H-7. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'ammoniaca.

Figura H-8. Combinazione di ecdf-plot e QQ-plot per il dataset per la determinazione del valore di fondo dell'ammoniaca dopo la rimozione del valore di 40.5 mg/l.

Tabella H-2. Risultati dei test per la selezione del tipo di distribuzione sul dataset di 169 osservazioni. Legenda: mvue=minimum variance unbiased estimator; mle=maximum likelihood estimates; nobs=numero di osservazioni; %cen=percentuale dati censored.

parametro	statistica	p.value	distribuzione	metodo	metodo stima	nobs	%cen
ammoniaca	0,266	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		169	4
ammoniaca	0,629	0,000	Normal	Shapiro-Francia GOF	mvue	169	4
ammoniaca	0,682	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	4
ammoniaca	3,311	0,000	Normal	Zero-Skew GOF	mvue	169	4
ammoniaca	0,087	0,003	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		169	4
ammoniaca	0,963	0,000	Lognormal	Shapiro-Francia GOF	mvue	169	4
ammoniaca	0,962	0,000	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	4
ammoniaca	-0,377	0,042	Lognormal	Zero-Skew GOF	mvue	169	4
ammoniaca	40,325	0,000	Gamma	Chi-square GOF	MLE	169	4
ammoniaca	0,985	0,002	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	169	4
ammoniaca	0,968	0,001	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	169	4
arsenico	0,290	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		169	14
arsenico	0,549	0,000	Normal	Shapiro-Francia GOF	mvue	169	14
arsenico	0,667	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	14
arsenico	4,308	0,000	Normal	Zero-Skew GOF	mvue	169	14
arsenico	0,117	0,000	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		169	14
arsenico	0,949	0,000	Lognormal	Shapiro-Francia GOF	mvue	169	14
arsenico	0,970	0,004	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	14
arsenico	0,043	0,818	Lognormal	Zero-Skew GOF	mvue	169	14
arsenico	70,432	0,000	Gamma	Chi-square GOF	MLE	169	14
arsenico	0,959	0,000	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	169	14
arsenico	0,920	0,000	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	169	14
ferro	0,249	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		169	2
ferro	0,603	0,000	Normal	Shapiro-Francia GOF	mvue	169	2
ferro	0,636	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	2
ferro	4,541	0,000	Normal	Zero-Skew GOF	mvue	169	2
ferro	0,184	0,000	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		169	2
ferro	0,904	0,000	Lognormal	Shapiro-Francia GOF	mvue	169	2
ferro	0,894	0,000	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	2
ferro	-0,673	0,000	Lognormal	Zero-Skew GOF	mvue	169	2
ferro	46,006	0,000	Gamma	Chi-square GOF	MLE	169	2
ferro	0,978	0,000	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	169	2
ferro	0,955	0,000	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	169	2
manganese	0,128	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		169	1
manganese	0,865	0,000	Normal	Shapiro-Francia GOF	mvue	169	1
manganese	0,875	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	1
manganese	1,492	0,000	Normal	Zero-Skew GOF	mvue	169	1
manganese	0,123	0,000	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		169	1
manganese	0,883	0,000	Lognormal	Shapiro-Francia GOF	mvue	169	1
manganese	0,888	0,000	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	169	1
manganese	-1,578	0,000	Lognormal	Zero-Skew GOF	mvue	169	1
manganese	20,444	0,085	Gamma	Chi-square GOF	MLE	169	1
manganese	0,993	0,074	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	169	1
manganese	0,985	0,070	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	169	1

Tabella H-3. Risultati dei test per la selezione del tipo di distribuzione sul dataset eliminati gli outlier statistici. Legenda: mvue=minimum variance unbiased estimator; mle=maximum likelihood estimates; nobs=numero di osservazioni; %cen=percentuale dati censored.

parametro	statistica	p.value	distribuzione	metodo	metodo stima	nobs	%cen
ammoniaca	0,244	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		168	4
ammoniaca	0,708	0,000	Normal	Shapiro-Francia GOF	mvue	168	4
ammoniaca	0,765	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	168	4
ammoniaca	2,167	0,000	Normal	Zero-Skew GOF	mvue	168	4
ammoniaca	0,089	0,002	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		168	4
ammoniaca	0,959	0,000	Lognormal	Shapiro-Francia GOF	mvue	168	4
ammoniaca	0,957	0,000	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	168	4
ammoniaca	-0,401	0,031	Lognormal	Zero-Skew GOF	mvue	168	4
ammoniaca	40,190	0,000	Gamma	Chi-square GOF	MLE	168	4
ammoniaca	0,986	0,003	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	168	4
ammoniaca	0,968	0,001	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	168	4
arsenico	0,261	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		168	14
arsenico	0,656	0,000	Normal	Shapiro-Francia GOF	mvue	168	14
arsenico	0,788	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	168	14
arsenico	2,761	0,000	Normal	Zero-Skew GOF	mvue	168	14
arsenico	0,119	0,000	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		168	14
arsenico	0,945	0,000	Lognormal	Shapiro-Francia GOF	mvue	168	14
arsenico	0,963	0,001	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	168	14
arsenico	0,002	0,993	Lognormal	Zero-Skew GOF	mvue	168	14
arsenico	69,524	0,000	Gamma	Chi-square GOF	MLE	168	14
arsenico	0,965	0,000	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	168	14
arsenico	0,929	0,000	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	168	14
ferro	0,178	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		166	2
ferro	0,848	0,000	Normal	Shapiro-Francia GOF	mvue	166	2
ferro	0,888	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	166	2
ferro	1,254	0,000	Normal	Zero-Skew GOF	mvue	166	2
ferro	0,188	0,000	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		166	2
ferro	0,889	0,000	Lognormal	Shapiro-Francia GOF	mvue	166	2
ferro	0,876	0,000	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	166	2
ferro	-0,710	0,000	Lognormal	Zero-Skew GOF	mvue	166	2
ferro	42	0,000	Gamma	Chi-square GOF	MLE	166	2
ferro	0,973	0,000	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	166	2
ferro	0,942	0,000	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	166	2
manganese	0,117	0,000	Normal	Lilliefors (Kolmogorov-Smirnov) normality test		167	1
manganese	0,888	0,000	Normal	Shapiro-Francia GOF	mvue	167	1
manganese	0,897	0,000	Normal	Shapiro-Francia GOF (Singly Censored Data)	MLE	167	1
manganese	1,281	0,000	Normal	Zero-Skew GOF	mvue	167	1
manganese	0,126	0,000	Lognormal	Lilliefors (Kolmogorov-Smirnov) normality test		167	1
manganese	0,875	0,000	Lognormal	Shapiro-Francia GOF	mvue	167	1
manganese	0,880	0,000	Lognormal	Shapiro-Francia GOF (Singly Censored Data)	MLE	167	1
manganese	-1,635	0,000	Lognormal	Zero-Skew GOF	mvue	167	1
manganese	18,581	0,137	Gamma	Chi-square GOF	MLE	167	1
manganese	0,991	0,029	Gamma	PPCC GOF Based on Chen & Balakrisnan (1995)	MLE	167	1
manganese	0,981	0,021	Gamma	Shapiro-Wilk GOF Based on Chen & Balakrisnan (1995)	MLE	167	1